HW9 Solutions

May 10, 2001

27.1-6 Skew Symmetry: If fi(u,v) = —fi(v,u) and fo(u,v) = —fao(v,u), then fi(u,v) +
fo(u,v) = = f1(v,u) — fo(v,u), thus (f1 + f2)(u,v) = —=(f1 + f2)(v,u).

Flow conservation: Since the identities of the source and sink are identical in f; and fo,
the set V' —s,t is the same in f; and fo. If > oy fi(u,z) =0 and Y, oy fo(u,x) =0, then

ZxEV fl(uvm) + f2(u7x) =0, and Za:eV (fl + fg)(u,l') = 0.
Capacity constraint: fi(u,v) < ¢(u,v) and fa(u,v) < c(u,v) do not imply that (fi +

f2)(u,v) < c(u,v). Simple Countere_xample: f1(u,v) = fo(u,v) = c(u,v), but (f1 + f2)(u,v) >
c(u,v).

In short, flow conservation and skew symmetry hold, but the capacity constraint does not.
27.2-2 See separate .jpg file.

27.2-3 The minimum cut divides V into {s,v1,vs,v4} and {vy,t}. It is easy to verify your
answer because the max-flow min-cut theorem requires the capacity across the minimum cut
to be equal to 23! The augmenting paths in (¢) and (d) cancel flow. The augmenting path in
(c) cancels 7 units of flow from ve to v1. The augmenting path in (d) cancels 4 units of flow
from w3 to wvg.

27.2-7 To show that f, is a flow in G, we need to check that it satisfies the three properties
of flows:

Capacity constraint:

If (u,v) is on p, fp(u,v) =cf(p) < c
If (v,u) is on p, fp(u,v) = —c¢(p) <0 < cf(u,v

Skew symmetry:

If (u,v) is on p, fp(u,v) = cf(p), fp(v,u) = —c¢(p) = fp(u,v) = —fp(v,
If (v,u) is on p, fp(u,v) = —cg(p), fp(v,u) = cs(p) = fp(u,v) = —fp(v,
if neither (u,v) nor (v,u) is on p, then f,(u,v) = fp(v,u) =0= fy(u,v

)
)
= 7fp(v’ u)

e 8

~—

Flow conservation:

From the definition of augmenting path, p is a simple path from s to t. So, for all u € V —{s,t},
if u is on p, then there exist v1,vy such that (v1,u) and (u,vs) are on p. Moreover, for all

v # vi,v2, fp(u,v) = 0. Thus, 3 fp(u.v) = fp(u,v1) + fp(u,v2) = —cf(p) +cs(p) =0 1f u
is not on p, then for all v € V, f,(u,v) = 0. Thus, > oy fp(u,v) =0

Since p is a simple path, s has only one successor in p, say, u So (s,u) is on p and Vv #
u, fp(s,v) = 0. By definition, |f,| = > v fo(s,v) = fp(s,u) = c¢(p) > 0 (since V(u,v) €
E¢,cr(u,v) > 0).

Grading: 1 point for each flow property, 1 point for proving |f,| > 0

16.1-1 m[i, j| table:

0 150 330 405 1655 2010
0 360 330 2430 1950
0 180 930 1770
0 3000 1860
0 1500
0
sli, j] table:
1 2 2 4 2
2 2 2 2
3 4 4
4 4
5

Thus, the optimal parenthesization is (A;A2)((AsAy)(A54s)).

Grading: 1 point for the correct parenthesization, 4 points for the correct content of the
tables, 0.5 point off for each error in the table.

16-3 ¢f[i, j] records the minimum cost of changing x[i..m] into y[j..n], and op[i, j] records the
corresponding operation used to achieve this minimum cost. We compute them with a dynamic
programming algorithm; ¢[1, 1] is returned as the edit distance from z to y. We can print out
the optimal transformation sequence using the matrix op.

Edit_Distance(x, y, ¢, op)

m = length(x); n = length(y);

cm+1, n+1] = 0;

fori=m—1
cli, n+1] = min(cost(kill), cost(delete) + c[i+1, n+1]);
op[i, n+1] = the corresponding operation

forj=n—1
c[m+1, j] = cost(insert) + ¢[m+1, j+1J;
op[m+1, j] = inxsert;

fori=m —1

forj=n—1

if (z; = y;)
cl = cost(copy) + c[i+1, j+1J;

else ¢l = oc;

if(i <m && j <n&&xi:yj+1 && zH_l:yj)
c2 = cost(twiddle) + c[i+2, j+2;

else cl = oc;

c3 = cost(replace) + cli+1, j+1];

c4 = cost(insert) + c[i, j+1];

ch = cost(delete) + cli+1, jJ;

cli, j] = min(cl, ¢2, 3, c4, ¢5);

opli, j] = the corresponding operation

return c[1, 1J;

Print_Trans_Seq(op, X, y)

i=1j=1

while (i <m && j < n)

switch (opli,j])
case copy: PRINT("copy” + x[i]); i++; j++;
case replace: PRINT ("replace” + x[i] + "by” + y[j]); i++; j++;
case insert: PRINT("insert” + yl[j]); j++;
case delete: PRINT("delete” + x[i]); i++;
case twiddle: PRINT ("twiddle” + x[i] 4+ x[i+1] + "into” + x[i+1] + x[i]); i += 2;j += 2;
case kill: PRINT("kill”); i = m + 1;

Both running time and space requirements are O(mn).

Grading: The problem ask you to find the edit distance AND print an optimal transfor-
mation sequence. 2.5 points off for not including the print-out part. 1 point for time and space
analysis.

17.2-1 Assume the n items are labeled 1..n in nonincreasing order of v;/w;. A solution
containing ¢; pounds of item i is denoted as {vj..v,}. Suppose with n — 1 items we can get
optimal solution according to greedy algorithm, then with n items, with greedy strategy, we
should take v = min(wy, W) pounds of item 1. Suppose there’s an optimal solution with v; < v
which has a total value m = Y, v; * t;/w;. Then 35,>/_,v; > v — vy, and we can exchange
v — v1 pounds of item 2..5 with item 1, without decreasing m. The resulting solution contains
min(wy, W) of item 1, and will still be an optimal solution.

17.2-2

Knapsack(v, w, W)
file:/ /calculating cli, j]
n = length(v);
forj=0to W
C[Oa J] =0;
fori=1ton
cli, 0] = 0;
forj=1toW
if(w; <j)
v =cli-1, j - wi| + v3;
it (v > c[i-1, j])
cli, j] = v;
else cli, j] = c[i-1, j|;
file://printint out the items to take
J=Wii=n
while(j > 0)
while(c[i, j] = c[i-1, j])

Pi=i- 1
PRINT(i);
J=1]-wi
P—i- 1

Grading: 2 points off for only calculating the matrix cli, j| without giving the algorithm
to decide what items should be taken.

17.2-4 This can be solved with greedy strategy: Only stop at the most distant gas station
that can be reached with the available gas. This yields an optimal solution. Suppose the gas
stations along the way are numbered as 1...n and the greedy strategy chooses to stop at 7;...7p.
Suppose there’s an optimal solution that stops at ji..j,. We can prove by induction that i > j.

The base case is obvious from the greedy strategy. Now suppose i > jr. Since jri1 is
reachable from ji, then it’s certainly reachable from iz, and since the greedy strategy chooses
the most distant reachable gas station, we have 7511 > ji41. Now if p > ¢, since we have i, > j,
and the destination is reachable from j,, it’s also reachable from i,, we wouldn’t have stopped
at ig41...1p, contradiction. So p < ¢, and we have an optimal solution using a greedy strategy.

36.1-3 Here is a very simple encoding for adjacency matrices: Create a string of |V|? bits. If
there is an edge from i to 7, set bit i|V| + j to 1, otherwise set it to 0. O(|V|?) time is needed
to create this representation. To get back to a graph from this representation, read the string
once to determine its length. Take the square root of the length, and call it n. Read through
the string again, and for each 1 at location i, “place an edge” from {%J to imod n. Presuming
that placing an edge takes O(1), which is only reasonable, this works in O(|V'|?), polynomial.

There were a few very ingenious and correct encodings given for adjacency lists. The
biggest problem in designing an encoding is ensuring that the encoding is one-to-one, that is,

no encoding can represent multiple graphs. This was also the biggest cause for loss of credit.
This solution is a variation of one given by a student.

Let 00 represent 0, let 01 represent 1, and let 10 represent NEXT, and let 11 represent
STOP. Let e be a function taking a binary number and converting it to this representation.

Number the vertices, and move through the in numerical order. For each vertex u: For each
vertex v adjacent to u, append “e(v) NEXT” to the string. When all vertices adjacent to u
have been appended, remove the last NEXT and append STOP.

So a graph with vertices {0, 1,2} and edges {(0, 1), (0,2), (2,1)}, the representation (grouped
by two bits for ease of reading) would be 00 01 10 01 00 11 11 00 01 11. (Undoing function e,
this would be 01 NEXT 10 STOP STOP 01 STOP.)

To get the graph back, first read through, two by two, and count the number of STOPs
found. This is the number of vertices. Start a counter ¢ at 0. Read again from the beginning -
now when you encounter a NEXT, decode the string since the last special code, and add an edge
from 7 to the decoded vertex number. When you encounter STOP, increment the counter and
continue. This requires three readings of each code, and there will be |V| STOPs, |F| NEXTs,
and |F|1g|V| other codes. O(1) work is done decoding each code, and O(1) work is done adding
an edge, so this is clearly polynomial in terms of |V| and |F|; creating this representation has
similar time requirements.

Since one can get compose either representation or get a graph back from either represen-
tation in polynomial time, the representations are polynomially related. I.e., to get the matrix
from the list, decode the list and re-encode as a matrix.

Credit was given this way: 1 point for matrix representation, 3 points for list representation,
and 2 for proving their mutual convertibility in polynomial time.

