HWS Grading Policy & Some Clarifications

April 26, 2001

Grading

Here is how the program for computing shortest paths was graded by Bo:

e The program was tested on
g.Dijkstra(”’NJJERSEY CITY N”, "PASCRANTON SSW”, output);
the "test: ****ms” written on your report is the time your program took to run on
my machine. Most results are well under 4s. (Whether your algorithm stops when the
destination is extracted from the priority queue doesn’t change the order of the running
time.) 4 points were deducted for an incorrect result, 10 points were deducted if algorithm
didn’t work, and 2 points were deducted if the running time was greater than 10s.

e Adjacency Lists should be used for representing the graph,
e A binary heap should be used for the priority queue.

e You should keep track of the position of the vertex in the heap, so that Decrease-Key can
be done in O(log|V|). Searching through the whole heap to find the vertex whose key you
want to decrease doesn’t make sense. That means that you are not taking advantage of
the heap structure; that search alone would take O(|V|). 4 points were deducted if you
did this badly.

e The correct result for connected component is 56. 4 points were deducted for an incorrect
result

e BFS is used to compute connected components, since the biggest connected component
has 91665 nodes. If you use DFS, it would go into that many levels of recursion before
exiting. This would need a very large stack. If you tried DFS, you were likely to get
a StackOverflow Exception for this assignment. On the other hand, for BFS, the max
size for the queue only 709 for the biggest component, and each element of the queue
only needs to hold the infomation you need. For DFS, for each step in recursion, lots
of information is stored. So recursive functions, though clean in style, can be dangerous
when you go too deep. Note that the problems is not that we have a big graph. If each
connected component were small, DF'S won’t have too many levels of recursion. 1-2 points
were taken off for not giving an adequate reason for choosing BFS over DFS.

e [was loose in grading the running time analysis, since I didn’t make it clear in the
handout. Some of you gave me the actual running time, some gave an analysis in the big
O notation, some even plotted a graph of running time vs. graph size...

Notes posted in newgroup

In case you didn’t read the newsgroup and were confused ...

e The first parameter of the constructor for Graph might be confusing for some of you.
It’s supposed to be the first nodelD you want to include in your graph. I think I didn’t
mention that the nodelD is roughly ordered by states, so nodes in the NY state have
nodelD between NY_NODE_BEGIN, NY_NODE_END (I give the value of them in
test.java). So if you want to be able to construct a subgraph for one state so that you
can test your algorithm on a smaller data, you can make use of that parameter. but I
will only test your program with Graph g = new Graph(l, NUM_NODES, "road.dat”).
Thus, you may choose to ignore the first parameter in your program.

e All the node IDs in the example of the handout are off by 1. The reason is that the node
ID in the data file starts with 1, while in my program, since I used that infomation as
the index to the array, I started with 0. Thus, each one is off by 1, and I didn’t change
it back when I printed them out ...

