HWT Solution Sketches

April 27, 2001

Bo graded the first 7 problems; Don graded the last 3.

24.1-1 Counsider G = (V, E) and consider the cut of G of the form ({u},V —{u}). Let A = 0.
Trivially, A is included in some MST and ({u},V — {u}) respects A. Since (u,v) is a light
edge, since it is a minimum-weight edge in G. Thus, by Theorem 24.1, (u,v) is safe for A, so
AU {(u,v)} = {(u,v)} is contained in some MST.

24.1-2 Consider a weighted undirected graph G = (V, E) with V = {1,2,3}, E = {(1,2),(1,3)},
w(1,2) =1, and w(1,3) = 2. So G looks like this:

1
1/ \ 2
/ \
2 3

Clearly the only MST for G is all of G. Let A = () and consider the cut ({1}, {2,3}). Clearly
the cut respects A and both (1,2) and (1,3) are safe for A. However, (2,3) is not a light edge
crossing the cut.

24.1-3 Suppose (u,v) is contained in the MST T'. Since T is a tree, removing (u,v) from T
disconnects it into two pieces, say 71 and Ts. Let V; be the vertices contained in T;, for ¢ = 1, 2.
Clearly (V1,V3) is a cut of the graph that respects 7' — {(u,v)}. Suppose that (u,v) is not a
light edge crossing this cut. Then there is another edge (u/,v’) such that w(u',v") < w(u,v).
Let T" =T — {(u,v)} U{(v/,v")}. Clearly the total weight of T” is less than that of T" (since we
have replaced (u,v) by (u',v")). T" is also a spanning tree, since there is a path in 7' — {(u,v)}
between any pair of edges in 77 and between any pair of edges in Ty, and (u',v’) gives us a
bridge between T; and T5. But this contradicts the assumption that 7" is a MST. So (u,v) must
be a light edge.

Comment: Note that Theorem 24.1 only says that a light edge should be safe. You can’t
conclude directly from that theorem that if an edge is safe for a cut, then it must be a light
edge for that cut (in fact, you proved the contrary in 24.1.2). If an edge is safe, then it is light
for some cut, but that’s what you need to prove.

24.2-1 Given T, sort the edges so that if there are ties, we always put edges in T ahead of the
ones not in 7. (That is, if there are two edges (u,v) and (u',v") such that w(u,v) = w(u',v"),
and (u,v) € T, (u/,v") ¢ T, we put (u,v) ahead of (u/,v’) in the list.

Comment: You can prove by induction that if you sort edges in this way, Kruskal will
return 7". For this homework, you got full credit as long as you gave the correct way of sorting
the edges of G. No proof was required.

24.2-4 Kruskal’s algorithm as discussed in the book (and in class) takes time O(|E|lg|E|):

e O(|V]) to do the initialization
e O(|E|lg|E|) to sort the edges by weight

o O((|[V|+|EN1g*(|]V]) + |E|) to process the edges using UNION-FIND.

If all the edges in a graph are in the range 1 to |V|, then we can do the sort using counting
sort, which takes time O(|V| + |E|) = O(|E|). In that case, running time of the algorithm
is O((|V] + |[E])1g*(|V]) + | E]). (It’s also OK to say O(|E|a(|E|,|V])), using the notation of
Ackermann’s function, as in the text.)

If all the edges in the graph are in the range 1 to W, where W is constant, then counting
sort takes time O(|E|) (since W is a constant, O(|E| + W) = O(|E|), so again, the running
time is O((|V] + |E])1g*([V]) + | E])

[Grading:] 3 points for each part. -1 if O(|E| + W) is not simplified to O(|E|).

[Comments:]

1. lg*|E| (or lg*|V|) cannot be taken to be a “constant for all practical purposes and thus
ignored in a complexity expression”. -1 every time you did this.

2. The third step of Kruskal’s algorithm (involving the Unions and Finds) takes time O((|V'|+
|E|)1g*(|V]) + |E|) and not O(|E|lg|E|) (as given in the book). However, no points were
deducted for this.

25.1-7 Consider the subgraph formed in this way: it consists of all the vertices in V reachable
from s and contains an edge from u to v if there is a shortest path from s to v such that the last
edge on that path is the edge from u to v. It’s easy to show that this subgraph is a tree with
s at the root. There are at most |V| vertices on the tree altogether and, since it’s a tree, there
are at most |V| — 1 edges. Relax the edges (u,v) on this tree in order of increasing distance of
u from s. That is, if d[u] < d[u'], then we relax all edges on the tree going out from u before
the edges going out from u’. It doesn’t matter what you do in case of ties. It is easy to check
that this sequence of |V| — 1 relaxes results in d[v] = é(s,v) for all vertices v on the tree.

Comment: It takes a little work to fill in all the details, but since this is a 3-point problem,
you got full credit if you present the right idea.

25.2-1 Here’s the result of running Dijkstra’s algorithm with s as the source. At the end of
each row, I've listed the vertex added to S.

k| d(s) | w(s) | du) | m(u) | d(v) | 7(v) | d(z) | 7(x) | dy) | 7(y) | S
1 0 NIL 3] (o'9) NIL)] 00 NIL | s
2 0 NIL 3 s 9 U 5 s (9] NIL | u
3 0 NIL 3] 9 U 5 s 11 T T
4 0 NIL 3 s 9 U 5 s 11 T v
5 0 NIL 3 s 9 U 5 s 11 x Y
Now here it is with y as the source:
k| d(s) | w(s) | d(u) | 7(u) | d(v) | 7(v) | d(z) | w(z) | d(y) | 7(y) | S
1 3 Y o0 NIL 7 Y o0 NIL 0 NIL | y
2 3 Y 6 S 7 Y 8 S 0 NIL | s
3 3 Y 6 S 7 Y 8 S 0 NIL | u
4 3 Y 6 S 7 Y 8 S 0 NIL | v
) 3 Y 6 s 7 Y 8 s 0 NIL | x

25.2-2 Almost any graph with negative-weight edges will cause problems for Dijkstra. For
example, consider a directed graph with three vertices, s, ¢, and u, three edges, (s,t), (s,u),
and (t,u), with w(s,t) = 2, w(s,u) =1, and w(t,u) = —2. If we run Dijkstra’s algorithm with
source s, we first add s to S, with d[s] = 0. At that point, we have d[t] = 2 and d[u] = 1, so we
add u to S. This doesn’t affect d[t]. Finally, we add ¢ to S. The final distances computed by
the algorithm will be d[s] = 0, d[u] = 1, and d[t] = 2. But then d[u] # 6(s, u), since §(s,u) = 0.

The problem in the proof of Theorem 25.10 occurs on the last line on p. 529 and the
material immediately following, where it says that “because ... all edge weights are nonegative,
we have that 6(s,y) < 6(s,u). Because this is false, the rest of the argument (in particular, the
conclusion that d[y] < d[u] is false.

This is all you needed to say for the problem, but to understand it better, it is helpful
to look at the rest of the proof more carefully and at the counterexample. In the second
paragraph of the proof of Theorem 25.10, they take u to be the first vertex added to S for
which d[u] # (s, u). In the counterexample above, u is indeed the first vertex added to S with
this property. The proof then looks at the shortest path from s to u—that would be the path
(s,t,u) in the counterexample above—and considers the first vertex y on that path that’s in
V — S and the predecessor x of ¥ on that path. In the counterexample, y is ¢t and z is s.

The third paragraph of the proof starts with the claim that d[y] = (s, y) when u is inserted
into S. That’s actually true in the counterexample, since d[t] = 2 = §(s,t) when w is inserted
into S. They then want to get a contradiction by showing that d[u] must be (s, u). This is
where they need the fact that 6(s,y) < 6(s,u). But in the counterexample above where y = t,
it’s not true that 6(s,t) < 6(s,u), since 6(s,t) =2 and 6(s,u) = 0.

[Grading: 3 points for a counterexample and 3 points for spotting where the problem lies in
the proof of the theorem.]

Common mistakes:

1. Many students forgot to point out the problem with the proof of Theorem 25.10.

2. Some students claimed that 6(s,u) < 6(s,y) + w(y, u) doesn’t hold if there are negative-
weight edges. Unfortunately, 6(s,u) < 6(s,y) + w(y,u) always holds according to the
definition of §(s,).

25.3-1 Here’s the result of running the Bellman-Ford algorithm with y as the source. In each
row, I've put in the result of doing one pass of relaxing the edges in lexicographic order, that

is (u,0), (u,2), (u,9), (v,u), (z,0), (2,9), (y,0), (y,2), (z,u), (2,7).

k| d(u) | w(u) | d(v) | w(v) | d(x) | w(z) | dy) | ©(y) | d(z) | 7(2)
1 8 z 7 Y 9 z 0 NIL 2 Y
2 5 v 6 T 9 z 0 NIL 2 Y
3 4 v 6 T 9 z 0 NIL 2 Y
4 4 v 6 T 9 z 0 NIL 2 Y

Now here it is again using z as the source and changing the weigh
stil go through the edges in the same order.

=+

=}

=h
—~~
N

,v) to 4. Notice we

k| d(u) | m(u) | d(v) | 7(v) | d(=z) | n(z) | d(y) | 7(y) | d(2) | 7(2)
1 6 z 00 NIL 7 2 00 NIL 0 NIL
2 6 z 4 T 7 2 2 U 0 NIL
3 2 v 4 T 7 z 2 U 0 NIL
4 2 v 2 T 7 z -2 U 0 NIL
5 2 v 2 Y 7 z -2 U 0 NIL

Because the 5th round of relaxation changes the weights, the graph has a negative-weight
cycle: (u,y,v).
[Grading:] 3 points for each table.

27.1-3 Call S the set of sources of a multiple-source, multiple-sink flow. To extend the value
of a flow to a multi-source situation, sum over the sources, making |f| = > cg > vev f(5,v).
Other properties extend analogously, particularly flow conservation, which would be for all
u €V —SUT, where T is the set of sinks.

Take a multi-sink-source flow, f,s, and add a supersource ss. Call the new flow f. Since
the members of S now must obey flow conservation in f, and only a flow between each member
of S (call it s;) and ss has been added, it must now be that f(s;, ss) provides flow conserva-
tion. So f(si,s8) = — Y ey fms(5i,v). By skew symmetry, f(ss,s;) = > ,cy fms(si,v). Since
ss only has direct flow to members of S, the value of the new flow |f| = > cy f(ss,v) =
Yosies f(85,8:) =20 5: € S Y pey fms(Sisv) = | fms|, as we wanted.

“Vice versa”: Now, take a single-source flow, f, and remove the source (call it ss), making
all vertices with direct flow from the old source into sources, members of S. Since in flow f,
the members of S obeyed flow conservation, and only flow from the source has been removed,

Y vev fms(si;v) = f(ss,5;). So the value of the new flow fis is X5 c5 D pey fms(si,v), which
equals 3, ¢ f(s5,5;). Because ss only had direct flow to the members of S, this equals |f]|.

27.1-6 Skew Symmetry: If fi(u,v) = —fi(v,u) and fo(u,v) = —fo(v,u), then fi(u,v) +
fQ(U,U) = _fl(vau) - fQ(U,U), thus (fl +f2)(u,v) = _(fl + fQ)(Uau)'

Flow conservation: Since the identities of the source and sink are identical in f; and fs,
the set V —s,t is the same in f; and fo. If 30 oy fi(u,z) =0 and Y oy fo(u,) = 0, then
Yeey f1(u,) + fo(u,2) =0, and Y ey (f1 + f2)(u,z) = 0.

Capacity constraint: fi(u,v) < c(u,v) and fa(u,v) < c¢(u,v) do not imply that (f1 +
f2)(u,v) < ¢(u,v). Simple counterexample: f1(u,v) = fo(u,v) = c(u,v), but (f1 + fo)(u,v) >
c(u, v).

In short, flow conservation and skew symmetry hold, but the capacity constraint does not.

Extra Problem:

f(X)Y) Yrex 2yey f(T,Y) [by def. of {f[X, Y]
Zer Z:ceX f(xa y)
Yyey 2aex —f(y,x) [by skew symmetry]

- EyEY EweX f(ya :U)
(Y, X) [by def. of (Y, X)]

