409 HW5 Solution Sketches

March 27, 2001

22.3-1 As pointed out on netnews, we have to assume that the UNION here is the one used
in the text (or, equivalently, we have to do FINDs on the arguments of the UNION, since in
general, the arguments are not the roots of trees. Sorry about the confusion here.

After line 4, we have the 8 trees:

0 12 14 16
L

2 1
I I
1 9 11 13 15

4 6 8
I
3 5 7

After line 6, we have the 4 trees:

————— g----- ----16----
L [N I
4 5 67 12 13 14 15
/1N /\
1 2 3 10 11
/
9

Note that 1 is the child of 4 because in the course of doing UNION(1,5), we had to do a
FIND on 1, which resulted in path compression. For similar reasons, 5 is the child of 8, and 13

is the child of 16.
After line 9 we have 1 tree:

After line 10, we do path compression for 2 and 4 after finding 2, so we get the following
hard-to-draw tree:

I [
10 12 13 14 15

AN

After line 11, we do path compression for 9, so we get the following even harder-to-draw
tree:

[Grading: 1 each for the trees that arise after lines 4, 6, 8, and 9. 2 each for the results of path
compression after lines 10 and 11.]

Common mistakes:

1. A lot students don’t do the path compression when executing FIND(z).

2. Some students didn’t notice that the default root of UNION(z,y) is y if rank(x) = rank(y),
and they end up with trees like these:

1 3 5 7

(N

[

2 4 6 8

3. When executing UNION(z11, z13) (where this version of UNION is the one in the text), we
must really do UNION(FIND(z11), FIND(213), using the UNION presented in class. Doing
FIND(z11) and FIND(z13) results in the following trees (after compression):

12 16
/\ /1N
10 11 13 14 15
/
9

We observe that the left tree is deeper. But FIND does not doesn’t change the rank, so
these two trees still have the same rank (since they had the same rank before we did the
FIND). That’s why we obtain the tree with 16 as its root. Several students made 12 the
root.

23.1-3 Suppose G = (V, E). For the adjacency list representation, given the array Adj repre-
sents G, construct the adjacency matrix Adj’ that represents G7 by setting Adj'[v] = {u: v €
Adju]}. We can compute Adj’ in time O(|V| + |E|) by running through Adj[u] for each u € V,
and constructing Adj’ in the process, adding u to Adj'[v] if we encounter v in Adj[u].

For the adjacency matrix representation, given a matrix A that represents G, construct the
matrix B = (b;;) that represents G' such that b;; = a;;. This clearly takes time O(|V'|?), which
is the size of the matrices A and B.

23.2-1 After running BFS-SEARCH|[3]|, we have 7[3] = NIL, 7[5] = 3, #[6] = 3, 7[4] = 5,
7[2] = 4, 7[1] = NIL, and d[3] = 0, d[5] = d[6] = 1, d[4] = 2, d[2] = 3.

23.2-3 The only line that changes in the algorithm presented in class is line 6 of BFS-
SEARCH][s]. It becomes “for each v such that a,, = 17. The running time is now O(|V|?), since
we go through the loop at most |V|? times altogether, once for each entry in the matrix.

23.2-6 Suppose first that G is connected. Do the BFS algorithm, but now we have two types
of gray (call them dark gray and light gray) and two types of black (dark black and light black).
(If the graph is bipartite, then we will be able to partition it into light black and dark black
vertices after running the algorithm.) Each time we call BF'S-SEARCH(s), we color s light gray.
If we are processing a light gray vertex u in the BFS algorithm (because it is at the head of Q),
and v € Adj[u], we proceed as follows:

e if v is white, we color it dark gray and put it in @ (setting m(v) = u, as before)
e if v is dark gray or dark black, we do nothing

e if v is light gray or light black, return “G is not bipartite”

After checking all the vertices in Adjlu|, we color v light black.
If v is dark gray, we do the same thing, reversing the roles of “light” and “dark”.

If, at the end of the algorithm, we have not returned “G is not bipartite”, then return “G
is bipartite”.

To see that this works, suppose that the algorithm returns “G is not bipartite”, and does
so in the course of running BFS-SEARCH(s). Suppose, by way of contradiction, that G is
biparitite. Then there must exist disjoint subsets V7, and V5 such that all the edges in F go
between V; and V,. Suppose that when we call BFS-SEARCH(s), that s € V3. ((An identical
argument works if s € V5.) Then we show by induction on when a vertex is colored in the
course of running BFS-SEARCH(s), that every vertex colored light gray (and later light black)
must be in V4 and every vertex colored dark gray (and later dark black) must be in V5. To see
this, suppose that a vertex v other than s is colored light gray. Then there must be an edge to
it from a vertex u that was earlier colored dark gray. By the induction assumption, © must be
in V5. Since there is an edge from w to v, it cannot be the case that v € V5, so v € V4. The
argument is identical if v is dark gray. But if the algorithm returns “G is not bipartite”, there
must be a vertex colored light gray that is adjacent to another one colored light gray or light

black, or a vertex colored dark gray that is adjacent to another one colored dark gray or dark
black. That means there is an edge between two vertices in V7 or an edge between two vertices
in V4, contradicting the assumption that G is bipartite.

On the other hand, if the algorithm returns “G is bipartite”, then let V7 consist of all the
vertices colored light gray or light black and V5 consist of all the vertices colored dark gray
or dark black. (Remember, we are assuming that the graph is connected, so every vertex is
colored.) Suppose there were an edge in E between two vertices in Vi, say u and v. That means
that both u and v are colored light gray when they are discovered. Suppose v is discovered
after u. That means that when v gets to the head of the queue, there will be a vertex (namely
u) in Adj[v] that is already colored light gray or light black. The algorithm will then return
“G is not bipartite”, contradicting the assumption that it returns “G is bipartite”. A similar
argument works if there is an edge between two vertices in Vs.

23.3-2 Here are the d/f pairs for each vertex: ¢ : 1/16, r : 17/20, s : 2/7, t : 8/15, u : 18 /19,
v:3/6, w:4/5 x:9/12, y:13/14, z : 10/11. We'll also accept it if you started with d = 0 (in
which case all your numbers will be 1 less than those given here.)

Extra problem: Suppose we are given a sequence ¢ of K MAKE-SETs + M FINDs + N
UNIONs, where all the FINDs are performed at the end. Let o’ be the prefix of o consisting
of the MAKE-SETs and UNIONs. Thus, ¢ = ¢’FIND(v1) ... FIND(vg). Clearly it takes time
O(K + N) to perform all the operations in ¢’. After this is done, we have a forest (collection of
trees), say T1,..., Tk, where the trees have K nodes altogether. Let r1,...,r be the roots of
these trees. Since a tree with n nodes has n — 1 edges (one for every node but the root, going
to its parent), the total number of edges in these trees is K — k.

Now consider what happens to these trees after we perform FIND(v), ..., FIND(v;), for
7 < M. We still have k trees, le, . ,T,g, where Tij has the same nodes and the same root as
T;. For any node v € T;, either it has the same parent in 7; and Tij , or its parent in Tl.j is r; (if
v was involved in some compression). To do the accounting, as we do FIND(v1), FIND(vs), ...,
FIND(v;), mark the edges in the original tree that get compressed. (That is, if v is in 7; and,
as a result of compression following a FIND, the parent of v is r; in T/, we mark the edge from
v to its parent in 7;.) Note if an edge in 7; is marked, so are all the edges from there on up to
r;, because of the way path compression works.

If vj1; is in tree T;, then the cost of FIND(vj41) is proportional to the cost of the path
from v to r; in Tij . The length of this path is 1 4+ the number of currently unmarked edges on
the path from T;. Thus, the total cost of all the M FINDs is O(K + M) (since there are only
K — k edges to mark). That means the total cost of o is O(K + M + N). and FIND are O(1)
operations.

Grading: 1 point each for mentioning that UNION and FIND are O(1) operations. 4 points
for the proof that M FINDs take O(K + M) (or O(N + M)).

Common mistakes:

1. Many students did an “average” case analysis of the running time of FIND. For some
M number of FIND’s, where M might even be a small num ber, this does not make

sense at all. This is probably a hangover from the probabilistic “expected” analysis of
data-structures like skip lists. The homework question does not mention an average case
analysis — by default, that means you should do a worst case analysis.

. Many students proved that M finds take O((K + M)lg*K) (or something similar), fol-
lowing up with the assertion that the [¢g* K is constant for all practical purposes. It might
be, but not for this proof. The question did not say anything about making such an
assumption, so you can’t (neither do any of the proofs given in class).

. Some students made the mistake of blindly following the proof given in class for the
general case (where the FIND’s are not at the end) - this was unnecessary (and leads
you to the wrong assumption about [g*K'); the proof to the homework problem is much
simpler.

