CS409: HW?2 Solutions

Feb, 2001

Bo graded the first five questions; Don graded the last four.

11.1-6 The top pointer of Stack h simulates the head pointer of the resulting queue, while
the top pointer of Stack ¢ simulates the tail pointer of the resulting queue:

ENQUEUE(x)
t.PUSH(x);

DEQUEUE(x)
if (t.EMpTY() && h.EMPTY())
error “underflow”
if (h.EmMPTY())
while (1t.EMPTY())
h.Push(t.Pop());
return h.Pop();

Comments: Most people get the “correct but inefficient” comment. (I took one point off

for this; perhaps it was asking a little too much for now ... ) Some people actually thought about
efficiency, for example, in ENQUEUE, if the last action performed is ENQUEUE, the new element
is just pushed in, while if the last action performed is DEQUEUE, they move everything back to
this stack and then push the new element in, similar with DEQUEUE, so if either ENQUEUE or
DEQUEUE is performed repeatedly, this will be more efficient than the most naive algorithm,
and it is actually quite close to what I have above. You only need to realize that once those
elements are in the other stack ready to be DEQUEUEed, you can just leave them there, you
don’t need to move them back before entering the new element. The above algorithm has an
O(1) amortized complexity (which will be covered in class soon).

11.2-2

PusH(k)
x.key = k;
x.next = L.head;
L.head = x;



Pop()

if STACK-EMPTY()
error “underflow”;

x = L.head;

L.head = x.next;

return x.key;

STACK-EMPTY()

return (L.head == NIL);

Comments: Almost everyone had the right idea, but:

1.

2.

One point was taken off for those who didn’t mention STACK-EMPTY.

This is supposed to be implemented with a singly linked list, but some of you are setting
the pointer pre, probably because you figured out this should be using LiST-INSERT and
then just copied from the textbook without much thinking. But note that Insertion and
Deletion for singly linked list is quite different from that for doubly linked list. I'm not
sure that those of you who used LiST-INSERT and LIST-DELETE instead of code were
aware of this.

. For Pop, the idea is LIST-DELETE, however you should be returning something, and you

shouldn’t put the code for deletion after the return line, since codes after return (to be
more exact, if they come after return in any possible path) won’t be executed...

. Most people supposed that the parameter for PUSH is an element (or node, with the fields:

key and next), and return an element instead of the key for Pop. This is actually not very
reasonable. The user of the Stack shouldn’t need to know that it’s actually implemented
with a List, so when they use PUSH, they will just give you the Key they want to push
in, and you should be creating the node with corresponding key to be inserted into the
List, similar for POP. No points were taken off for this, but you should note that there is
a distinction here.

11.2-5

UNION(Sl, 52)

if (S;.head == NIL) return So;
if (S3.head == NIL) return Si;
S1.tail.next = Sy.head;

Si.tail = Sy.tail;

return Sy

Comments:



1. Remember that the code to link the two lists should actually return a list! Many people
forgot this, and the grading was pretty lenient in the sense that we tried to figure out
which list was intended (normally the first one). Please make sure not to make this kind
of mistake again, because you will definitely lose more points.

2. Try to think through your solutions and see if all the pointers make sense in the final
result. In some cases, this wasn’t true.

3. Many people didn’t consider the cases that S; or S3 can be empty lists. Again the grading
was quite lenient, but if you were writing real codes, you might be getting exceptions!

11.4.2

PRINT-TREE(p)
if (p == NIL) return;
PRINT (p.key);
PRINT-TREE(p.left-child);
PRINT-TREE(p.right-child);

PRINT-TREE(T.root);

Comments: It’s really better to decide whether p is NIL at the beginning of the function. Mnany
people made the assumption that p is not NIL the first time PRINT-TREE is called. But actually
T.root might be NIL, so you’ll have to write:

if (T.root != NiL) PRINT-TREE(T.root);

Actually, most of you only gave the code for the recursive function without specifying how
it should be called, so I have no idea whether you are aware of this or not. Again, grading was
lenient on this.

12.2-4 Keeping the list in sorted order shouldn’t affect successful searches. An unsuccessful
search takes time about half the length of the list on average; we can quit once we’ve gone past
the element we’re searching for, and on average, the element we’re searching for will be around
the middle of the list. Insertion will take longer: on average, it will take time about half the
length of the list (since we have to run along the list to find the right place to do insertion),
whereas insertion at the head takes time O(1) independent of the length of the list. Note that
for deletion, we’re given a key, not a pointer (unlike the standard deletion in linked lists). If
the key we want to delete is actually in the list, on average, we have to search through about
half the list to find it, whether or not the list is in sorted order. On the other hand, if the key is
not in the list, having the list sorted saves a factor of two on average, just as with unsuccessul
search. Is it worth sorting? Probably not, unless the lists are long and we expect to have quite
a few unsuccessful searches in our application. [Grading: an informal argument as I've done it
is OK for this one.]



12.3-1: The hint in this problem is “long strings”. Since it is possible that several strings
might have much in common with the target string, the string-to-string comparisons might
become lengthy. One could use the hash values merely by replacing, within the algorithm,
“Compare target to string in the record at current location within list” with: “If h(target)
equals the hash value stored at current record, then compare target to string at current location;
else, move on to next record...”

Asuming uniform hashing, the probability of having to compare two strings that would turn
out to be different would be reduced to 1/m, where m is the number of hash slots.

Common mistakes:

1. Some people just said “compare hash values instead of strings”. While those people might
indeed understand that same hash values do not imply same strings, you are essentially
asked to describe a modification to an algorithm, and such imprecision is unacceptable.
Generally, no credit was given for this response.

2. Many people prescribed sweeping changes to the data structure to take advantage of the
hash values. The problem stated that the hash values are stored with the strings in a
linked list. While this is not the best structure for searching, it is clear that you should
live within it, and describe an alteration to the linked-list searching algorithm. Depending
on the level of radicality of the proposed changes, one point or no points was given.

12.3-4: Fairly straightforward:

h(61) = 700
h(62) = 318
h(63) = 936
h(64) = 554
h(65) = 172

Note that “mod 1” is interpreted as “fractional part”.

12.4-1: Here is what the final table looks like:

slot 0 1 2 3 4 5 6 7 8 9 10
linear probing 22 | 88 | - - 4 15 |28 |17 |59 |31 | 10
quadratic probing 22 | - 88 |17 |4 - 28 (59 |15 |31 |10
double hashing 22 | - 59 | 17 |4 15 | 28 | 88 |- 31 | 10

Comments: There were few notable mistakes other than cases where one miscalculation
causes a several-key “pile-up” by causing false hits or forestalling detection of legitimate hits.

12.4-4: Theorem 12.5 gives that on average the maximum number of probes needed for an
unsuccessful search would be ﬁ For a = %, %, and %, we have, respectively, 2, 4, and 8. For
a successful search, we are given a maximum of é + é In ﬁ This gives us, respectively, 3.386,
3.182 and 3.519. There were few errors (other than misreading the problem and giving only

numbers for unsuccessful searches).



