Computer Science 409, Spring 2001: Final Exam Solutions

1. [8 points: 4+4] Consider the following weighted graph:

(a) List the first 5 edges added to the minimum spanning tree by Kruskal’s algorithm.
Solution: GC, EA, FG, AB, and CD

(b) List the first 5 edges added to the minimum spanning tree by Prim’s algorithm
starting at vertex A.
Solution: EA, AB, EF, FG, and GC.

2. [7 points: 143+3] Suppose you have started running Dijkstra’s algorithm on an undirected
graph G(V, E) starting at a. Vertices a, b, and ¢ have been completed (i.e., are no longer
in the priority queue), and have distances 0, 2, and 5, respectively. Vertices d, e, f, and
g are still in the queue; these vertices have current distances (i.e. d values) of 11, 5, 17,
and oo, respectively. Edges (d, f), (e, f), (e,g), and (g, f) have weights 3, 10, 3, and 3,
respectively. Edges (d,e) and (d, g) have weight co (i.e, they don’t exist).

(a) Which vertex is processed next?
Solution: You proceses vertex e next.

(b) After processing that vertex, what will be the new d values of d, e, f, and g7
Solution: The new values for d, e, f, and g will be 11, 5, 15, and 8, respectively.

(c) For each vertex in the graph, what is the value of d (i.e., the shortest distance) when
the algorithm terminates?
Solution: For a, it’s 0, for b, it’s 2, for ¢ and e, it’s 5, forr g, it’s 8, for d and f, it’s
11.

3. [8 points] You have 400 quarters, 1,000 dimes, 2,000 nickels, and 10,000 pennies. Describe
a greedy algorithm for making change for any amount less than $100 using the least
number of coins. (No need to write detailed code; just explain how the algorithm works.)
Prove that your algorithm uses the least number of coins in making change.

Solution: If you need to make change for n cents (convert dollars and cents to cents),
then first use as many quarters as you can (|n/25], to be exact, then as many dimes as
you can for the remaining amount (the remaining amount is n — 25|n/25|, so you can use
([(n — 25|n/25)/10] dimes), and then pay the remaining amount in pennies. Here’s the
code. In the code, I use ni, no, n3, and ny for the number of quarters, dimes, nickels, and
pennies used when using the minimal number of coins to make change; n is the amount
of the change you need to make.

ny — 0;
ng « 0;
ng < 0;
while n > 0 do
ifn>25thenny «—ni+1;n+<—n—25
else if n > 10 then ny «— no+1; n < n —10
elseif n >5thenng<—ng+1;n<—n—>5
elsen.n;n«—0

0 ~J J Ut = W =

It remains to show that this algorithm gives change using the minimal number of coins.
Suppose nf, nf, ns, and n are the number of quarters, dimes, nickels, and pennies used
when making chnage using the minimal number of coins. Note that no < 2, since if no > 3,
we can replace three of the dimes by a nickel and a quarter, thus making change using
fewer coins. Similarly, ng < 1, since if ng > 2, we can replace two of the nickels by a dime.
Finally, ny < 4. Moreover, if no = 2, then ng = 0, otherwise we can replce two dimes and a
nickel by a quarter. But that means we have less than 25 cents altogether using nf, dimes,
n4 nickels, and n/; pennies, which means that n} = n;. We also have at most less than 10
cents in nickels and pennies, so ny = n4. Finally, we have less than 5 cents in pennies, so
ng = n4. It follows that ny = n}, since n = 25n;+10ny+5n3+n4 = 250} +10n5+5n5+n).

Remark: Everyone got the greedy algorithm right (so everyone got at least 4 on the
question). However, no one really gave a careful enough proof of correctness. The greedy
algorithm wouldn’t work if we had only quarters, dimes, and pennies (but no nickels).
For example, suppose we had to return 30 cents. Then using the algorithm above, we
would use one quarter and 5 pennies. It’s clearly better to use three dimes. Whatever
argument you give better fail if you don’t have nickels. Almost all the arguments actually
given worked perfectly well in this case too.

4. [9 points: 1 + 3 + 3 + 2]

(a) What is a flow network.
Solution: A flow network is a graph where each edge is labeled by a positive number
called a capacity. There are also two distinguished nodes called the source and the
sink. [Remark: a flow network is not a flow.]
(b) What is a flow in a flow network?
Solution: Given a flow network G = (V, E) with capacity function ¢, a flow in G is
a real-valued function f : V x V — IR satisfying three properties:
— f(u,v) < ¢(u,v) (capacity constraint)
— f(u,v) = —f(v,u) (skew symmetry)
— Y ey f(u,v) = 0 if u is neither the source nor the sink.
(c) Given a flow f in a flow network G, what is the residual network G ?
Solution: If G = (V, E) is a flow network with a capacity function c, let cf(u,v) =
c(u,v) — f(u,v). Gy is the flow network with vertices V, edges Ef = {(u,v) :
cf(u,v) > 0, and capacity cy.
(d) What is an augmenting path with respect to f (where f is a flow in flow network G).
Solution: An augmenting path with respect to f is a path in Gy.

5. [8 points]

(a) Suppose we wanted to represent a large binary tree as a graph. Is it better to store
it as an adjacency list or as an adjacency matrix? Why?

Solution: An adjacency list is better, since has at most two edges going out (if it’s
a directed tree) or three if it’s not. Thus, less storage is needed to represent the tree
using an adjacency list.

(b) What is difference between amortized time and expected time?
Solution: With amortized time we consider the average cost per operation if many
operations are performed. [Remark: a lot of the answers here were pretty far off
...] With expected time, we consider the average (expected) running time of the
algorithm assuming a distribution over the inputs.

(¢) True or false: if A <p B and A is NP-hard, then B is NP-hard. Why?
Solution: True. if A is NP-hard, then all problems in NP can be reduced to A.
Since <p is transitive, then all problems in NP can be reduced to B, so B is NP-hard.

(d) True or false: If f(n) = O(g(n) and h(n) = O(g(n), then f(n) = O(h(n)).
Solution: False. O(g(n)) just says that g(n) is an upper bound. For example, if
h(n) = n, and f(n) = g(n) = n?, then f(n) = O(g(n)) and h(n) = O(g(n)), but
f(n) # O(h(n)).

6. [10 points: 2+2+6] Suppose that L C {0,1}*.

(a) Carefully define L*.

Solution: L* = e ULUL?U..., where ¢ is the empty string, and L* consists of all
strings of the form zixs ... xk, where z1,..., 2 € L.

(b)

(c)

If L1 =0,01 and Ly = 1,10, what is L1Ls?
Solution: Ly Ly = {01,010,011,0110}.

Show that if L is decidable in polynomial time, then so is L*. (Hint: use dynamic

programming. Again, there’s no need to write detailed code.)

Solution: Given z = x1...x,, let 20 =¢, ¥ = x1 ...z and let 29F = xj...ap (for

1 < j < k. The idea of the algorithm is to check if ¥ € L*. Note that z**1 ¢ L*
iff there is some j > 0 such that 2/ € L* and 27**! € L. With this in mind, here is
the algorithm. In the algorithm 7 is a table such that T'(j) =1 iff 7 € L*.

1 n«|z

2 for k=0tondo

3 if £ =0 then T'(k) «— 1 else T'(k) — 0

4 for j =0 to k do

5 if T(j) =1 and 2% € L then T(k) « 1
6 return 7'(n)

Running time: Suppose there is an algorithm to decide if y € L that runs in time
O(]y|™). The algorithm goes through the loop at most n2. On each iteration through
the loop, it may compute with y € L for some y with |y| < |z|. Thus, the computation
of whether y € L takes at most O(|xz|™) steps. Thus, the running time of the
algorithm on input x is O(|z|¥*2). As for correctness, it clearly suffices to show that
by induction on k that after the (k + 1)st iteration, T(k') = 1 iff 2* € L*, for all
k' < k. For the base case, z° = ¢ € L* and T(0) is set to 1 on the first iteration
of the algorithm. Suppose the induction hypothesis hold for £ — 1. T now prove the
inductive step. Notice that the only value of 7" that changes in the (k+ 1)st iteration
is T'(k). Clearly z* € L* iff there is a prefix 27 of z* such that 7 € L* and x7* € L.
So, by line 5 of the algorithm, if ¥ € L*, then T'(k) is set to 1 in the (k + 1)st
iteration. On the other hand, if ¥ ¢ L*, the inner loop never sets T(k) to 1; it
remains at 0. Since the algorithm returns T'(n), which is 1 iff zinL*, we are done.

7. [8 points: 2 + 1 + 5]

(a)

(b)

(c)

What is a Hamiltonian path?

Solution: A Hamiltonian path in a graph G = (V, E) is a path that goes through
each vertex in V exactly once.

What is a directed acyclic graph?

Solution: A directed acyclic graph is a directed graph G = (V, E) that has no
cycles; that is, there is no directed path of the form (vg,v1,...,vx) where vy = vy.
Show that the Hamiltonian-path problem can be solved in polynomial time on di-
rected acyclic graphs. (Again, you don’t have to write detailed code. Just explain in
English how the algorithm works.) Prove that your algorithm is correct. (You may
use any algorithms discussed in class. Hint: think about topological sort.)

Solution: Suppose G = (V, E) is a directed acyclic graph. First step: topologically sort
the vertices in G. (This can be done in polynomial time; we discussed an algorithm in
class.) Let vy,..., v be the list of vertices in topologically sorted order. Then check if

(vi,viy1) € E, for i = 0,...,k — 1. (Clearly this can be done in linear time.) Clearly
if (v;,v;41) € E for i = 0,...,k — 1, then the graph has a Hamiltonian path, namely
(vo,-..,vx). Conversely, if the graph has a Hamiltonian path, say (viy,...,v;,), where
@0, -- -, is some permutation of 1,..., k. We must have i; < i;41 forall j =0,...,k—1,
since the only edges in G from a lower-numbered edge in the topological sort to a higher-
numbered edge. The only way that this can happen is if 7; = j, that is, the Hamiltonian
path is (vg,...,vk_1), in which case (v;,v;41) € Efor i =0,...,k — 1.

[Remark: you can’t compute a Hamiltonian path using DFS, as many people tried to do.]

8. [11 points: 2 + 1 + 3 + 5] The low degree spanning tree problem is as follows: Given
a graph G find a spanning tree where the maximum degree of each node is as small as
possible.

(a) Convert this optimization problem to a decision problem.
Solution: The decision problem version is: does G have a spanning tree in which
each node has degree at most k.

(b) What is the formal language corresponding to the decision problem?
Solution: {(G,k) : G has a spanning tree where each vertex has degree at most k}.

(¢) Show that the decision problem is in NP.
Solution: Guess a spanning tree (that is, guess the edges in the spanning tree).
Then check that (a) there are no cycles in the edges you've chosen (i.e., it really is a
tree); (b) all the nodes are connected, and (c) each vertex has degree k. This can all
be checked in polynomial time. [Although you didn’t have to do it, here’s how: start
at any node, and do a breadth-first search. Keep track of all the nodes you’ve seen.
If the successor of a node is a node you’ve already seen, there’s a cycle. Make sure
that no node is left out of the search — otherwise the graph isn’t connected. Finally,
make sure that no node has more than k successors. Note that you did have to check
that the edges you’ve chosen form a spanning tree. You can’t just assume that they

do.]

(d) Show that it is NP-hard. (Hint: try reducing the Hamiltonian cycle problem to it.
It’s easy!)
Solution: Notice that a graph has a Hamiltonian path iff it has a spanning where
each node has degree < 2. Clearly a Hamiltonian path is a spanning tree where each
node has degree < 2. Conversely, suppose you have a spanning tree where each node
has degree < 2. It must be a Hamiltonian path. If there were any branching, there
would be some node with two successors and a parent, and it would have degree 3.
Thus, G is a graph with a Hamiltonian path iff (G, 2) is an element of the language
described in (b).

9. [12 points] We need a data type with the operations Insert, GetMax (report the maximum
element and delete it from the data structure), and ReportMin (report the minimum
element without deleting it from the data structure). For each set of requirements listed
below, describe a data structure for the ADT that fits the requirements and explain how
the operations are implemented in that data structure. (Note: n is the number of elements
that have been inserted.)

(a)

All operations take worst-case time O(lgn).

Solution: Use two heaps, one with the the maximum element at the top, and one
with the minimum elemenet at the top. (Both heaps store all the elements in the
data type.) Inserting an element means inserting it into each heap. That takes
O(lgn), since that’s what insertion takes in each heap. Finding the max can be done
in constant time (since it is the root of the first heap); then deleting the maximum
element can be done in O(lgn) time for each heap. ReportMin can actually be done
in constant time (since we just look at the minimum element in the second heap).
Alternatively, you can use one heap with the maximum element on top, and keep a
pointer to the minimum element. Every time you insert a new element, you need to
update the pointer. One point was deducted if you used a BST or a skip list instead
of a heap, since these data structures only have ezpected worst-case running time of
O(lgn).

GetMax and ReportMin each take worst-case time O(1). (Note that there is no
requirement on Insert.)

Solution: Use a sorted doubly-linked list. GetMax is easy (find the element at the
right-hand end and delete it). ReportMin is equally easy (find the element at the
left-hand end). Insertion takes time O(n), since we have to go along the whole list
to find the right place to put it the new element.

Insert and ReportMin each take worst-case time O(1). (Note that there is no re-
quirement on GetMax.)

Solution: Use a singly-linked list with the minimum element at the head. To insert
an element, just compare it to the left-most element. If it is less than the left-most
element, then put it at the left end. Otherwise, put it just past the leftmost element.
This clearly takes constant time. Finding the miminum also clearly takes constant
time (just look at the leftmost element). GetMax take time O(n) (since you have to
run along the whole list to find the maximum element).

