
COMS 381, Summer 2005
Supplementary Handout 2

Decision Problems for Regular Languages
Tuesday, June 7th

1 Introduction

When formal languages (regular languages and other kinds) are used in practical applications
or in more sophisticated theoretical proofs, we often find that certain basic decision problems
arise. For instance, we may wish to know if two languages L1 and L2 are the same, or if a
language is infinite. We will see decision problems for all the classes of languages that we
cover in 381; this handout is devoted to decision problems for regular languages only.

1.1 Formal definition of a decision problem

Formally (see Lecture 2 in the textbook), decision problems are mathematical questions of
the form:

Given sets A and B with B ⊆ A and an item x ∈ A, is x in B?
Intuitively, the set A represents all possible inputs to the decision problem, and B rep-

resents the subset of possible inputs having some particular property. For instance, A could
be the set of all graphs, and B the set of all connected graphs. The decision problem above
would then be the question: Given any graph x, is x connected?

1.2 Difficulty of solving decision problems for formal languages

Decision problems can be very easy to solve quickly, very computationally demanding, or
unsolvable. We will see unsolvable decision problems soon for context-free languages; for
now, we focus on problems which can be solved.

2 Decision problems

2.1 Given a regular language L, is L = ∅?
Note that this is asking about a property of an entire language, not just a string. Thus in
the formalism above our set A is the set of all regular languages, and our set B contains the
empty regular languages (i.e. those which contain no strings).

Our approach will depend on how L is specified.

• If L is given to us as a DFA or an NFA N , the emptiness question for L is equivalent
to the question: does N have any final states that are accessible from the start state?
If yes, L 6= ∅, and if not, L = ∅. This suggests a simple algorithm: we simply use
depth-first search (DFS) on the underlying transition diagram of N . We answer ‘yes’
if our search never reaches an accepting state, and ‘no’ if it does reach an accepting
state.

1

• If L is given to us as a regular expression, we can again convert the regular expression
to a DFA and continue as in the previous case.

2.2 Given a regular language L, is L = Σ∗?

This problem is easy to solve using our solution to the previous one: Given L, we can

a) Obtain a DFA accepting L

b) Convert this to a DFA accepting ∼ L as explained in class

c) Apply the algorithm from Decision Problem 2 to check if ∼ L = ∅.

2.3 Given a pair of regular languages L1 and L2, is L1 = L2?

Note that this is a decision problem that can arise in practice. Every time you check if two
automata or two regular expressions are equivalent, you are solving this problem.

Note that L1 = L2 iff the symmetric difference of L1 and L2 is empty (that is, there is no
string belonging to one but not both of the languages). Formally, the symmetric difference
(call it SD) of L1 and L2 is expressed as:

SD = (L1 ∩ L2) ∪ (L2 ∩ L1)

Since this expression uses only union, complement and intersection operations on L1 and
L2, we can construct a DFA accepting SD from DFAs from L1 and L2. Then, we can use
our algorithm for Decision Problem 2 to test for emptiness of SD.

2.4 Given a regular language L, is L infinite?

This is somewhat less intuitive than the previous problems. However, we can solve this
problem using the pumping lemma. If L is regular, it has a number k as specified in the
pumping property in Chapter 11 - k is sometimes called the pumping length. Note that we
can obtain k effectively from L - express L as a DFA and let k be the number of states of
this DFA. We make the following claim:

Claim 1 A regular language L is infinite iff L contains at least one string r such that
|r| ≥ k.

Proof (⇒) Suppose L is infinite. Then it contains strings of arbitrarily large length, so
the result follows immediately.

(⇐) Suppose L contains at least one string r such that |r| ≥ k. By the pumping lemma,
we can write r as xyz, with x = ε, y = r and z = ε. Then, we can write y (which is equal to
r) as uvw, with |v| > 0. By the pumping lemma, for all i ≥ 0 uviw ∈ L. Thus we have a set
of infinitely many strings all of which belong to L; consequently L is infinite as claimed. �

Clearly, if we can give an algorithm to check whether L contains at least one string of
length ≥ k, we will be done. However, if we simply start checking ever longer strings until
we find one that belongs to L, our algorithm may never terminate. We need some upper
bound on the length of strings that need to be checked.

2

Claim 2 A regular language L contains at least one string r such that |r| ≥ k iff L
contains at least one string r such that 2k ≥ |r| ≥ k.

Proof (⇐) Nothing to prove.
(⇒) Suppose for a contradiction L contains strings longer than k, but no strings r with

2k ≥ |r| ≥ k. Now, consider any string s ∈ L, |s| > 2k. Use the pumping lemma as above,
with x = ε, y the inital prefix of length k of s, and z the rest of s (thus |z| > k). Now
write y as uvw in the usual way, and consider the string xuwz. We know xuwz = uwz ∈ L
by the pumping lemma. But we also know that |uwz| ≥ k, since |z| > k. If we also have
|uwz| ≤ 2k, we have a contradiction.

Otherwise, repeat the process on the new string uwz. Again, we can use the pumping
lemma to produce a shorter string that is also in L. Iterate this process as many times as
necessary; since the strings we produce get shorter every time, we will end up by obtaining a
string s which must belong to L and have length between k and 2k. Thus, we are guaranteed
to arrive at a contradiction. �

The complete algorithm for checking whether a language is infinite is therefore:

a) Obtain the pumping length k (e.g. by constructing a DFA)

b) Check if any string r having length between k and 2k is in L. If yes, answer that L is
infinite, if no, answer that it is finite.

3

