- 1. Prove non-regularity of the following languages.
 - (a) $L = \{0^{i^2} \mid i \ge 0\}.$
 - (b) $L = \{w \mid w \in \{0, 1\}^*, w = w^R\}$, where w^R is the reverse of the string w.
 - (c) The set PAREN of balanced parenthesis (). For example, (()())(()) belongs to PAREN but ())(does not.
 - (d) $\{0^i w w 0^j \mid i, j > 0, w \in \{0, 1\}^*\}.$
- 2. Prove that if A is a regular language over Σ and $\{a, b\} \subseteq \Sigma$, then the following language is also regular.

$$\{c^n \mid \exists w \in A, \ \#a(w) + \#b(w) = n\}$$

3. 4.2.11.

4. Consider the language $L = \{a^i b^j c^k \mid i, j, k \ge 0 \land \text{ if } i = 1 \text{ then } j = k\}.$

Prove that L satisfies the conditions of the pumping lemma, i.e. show that there is a number p where, if s is a string of length at least p in L, then s may be written as s = xyz such that

• for each $i \ge 0, xy^i z \in L$.

•
$$y \neq \varepsilon$$

• $|xy| \le p$.

Prove that L is nonregular. Explain why this fact does not contradict the pumping lemma.