
9.2.4 Solution by: Mark

First observe that any proof that one of the languages is recursive generalizes to each Li. So
let’s prove L1 to be recursive.
By the construction in Exercise 9.2.6 (a), we know the RE languages are closed under set
union. This means the union of L2, L3, . . . Lk yields an RE language. This resulting language
is the complement of L1. Theorem 9.4 states that if a language and its complement are both
RE, then both languages are also recursive. Thus we conclude L1 to be recursive.

There is an alternative solution found on the textbook’s website. Take TM’s M1, M2, . . . MK

for each of the languages L1, L2, . . . LK , respectively. Design a TM M with k tapes that



accepts L1 and always halts. M copies its input to all the tapes and simulates Mi on the
ith tape. If M1 accepts, then M accepts. If any of the other TM’s accepts, M halts without
accepting. The problem statement (parts 1 and 2) assures that every string appears in
exactly one of the languages so we know exactly one of the Mi will accept. Therefore M is
sure to halt and we conclude that L1 is recursive.

9.2.5 Solution by: Brian

In this problem, we are asked to show whether L′ and L′ are recursive, RE, or non-RE.

L′ = {0w | w ∈ L} ∪ {1w | w ∈ L}

Let us assume, for a contradiction, that L′ is RE. We thus have a machine M that accepts
L′.
Then, we could create a machine M ′ to accept L, which is non-RE. To do this, we need a
machine that, on input w, accepts w if and only if w ∈ L. So, our machine M ′ will take an
input w, add a 1 to it, making the input 1w, then run 1w through our machine M . We know
by the definition of L′ that 1w will be accepted if and only if w ∈ L. Thus, we have created
a machine to accept L, which is assumed to be non-RE. This is a contradiction, so therefore
L′ must also be non-RE.
What about L′? We can see easily that

L′ = {1w | w ∈ L} ∪ {0w | w ∈ L}

Using the same argument as above (except that we pass 0w to our machine for L), we see
that L′ must also be non-RE.

Comments: Most people did not discuss L′, and two points were taken off for this.

9.2.6 Solution by: André

In what follows, the languages are L1 and L2 when there are two languages, and L1 when
there is only one. There are Turing Machines respectively called M1 and M2 which accepts
those languages. They always halt when L1 and L2 are recursive.

a) Union Recursive and Recursively Enumerable languages are closes under union. Let’s
built a Turing Machine M which is going to simulate M1 and M2 on the input it gets. M
will accept if either accept. So with more details, M has two tapes, receives the input on
its first tape, copies it on the second tape, then simulate M1 on its first tape, and M2 on
its second tape. We thread the execution (so we run M1 for say 10 moves, then M2 for 10
moves, then M1 again, etc. As soon as one machine terminates and accept, we accept (and
stop). If both don’t accept, then we don’t accept. If both run forever (or one does, and the



other rejects), then we run forever. We need to thread the execution in case the first one
runs for ever but the second one accepts. In the recursive case, we don’t need to bother with
threading, our M always stops. Conclusion: both R and RE are closes under union.

b) Intersection This is really the same construction as in a), you just accepts if and only
if both M1 and M2 accepts. Note that you don’t need to thread here since for M to accepts,
you need to have M1 accepts (hence stop).

Some of you tried using the De Morgan laws. Indeed L1 ∩ L2 = L1 ∪ L2

For recursive languages, that shows directly that intersection is closed, because union are
complement are. For RE languages, well, it doesn’t work. Complement of a RE languages
is not necessarily RE. In fact, it is not if the languages is not recursive. But you don’t really
know what’s going on for the union of two not RE languages. Presumably not RE. And
what about the complement of a not-RE language? Could be RE.

c) Concatenation We would like to build a TM which given a string w, split it in such
a way that the first part is in L1 and the second in L2. One way of doing it is to have the
TM non deterministically split w into xy, run M1 on x and M2 on y. The non-determinism
takes care of all you need to worry about. In the case of recursive language, it’s going to
terminate (the splitting, and M1 and M2 are always going to stop). RE: well it stops if it
accepts both parts, which is want you want.
Another way of doing it is to split w in all possible ways. But be careful, a Turing Machine
doesn’t have an infinite amount of tapes. You can’t just say, I create a new tape for every
possible split. You have to build your Turing Machine before seeing w (so the number of
tapes is defined before knowing how many you would like to use, and I can always give you
a w for which you need more than what you had). With this method, one of the right way
is to write all possible splitting on one tape (separated by a blank of whatever else); then
simulate one at a time. In the case of RE languages, make sure you thread the running (you
run each of the possibilities for a fixed amount of time) so that you don’t get trapped by a
string for which you don’t have termination when they were stills splittings which could be
accepted.

An horrible mistake is to assume that a Turing Machine works like a DFA, that it takes its
input gradually. You cannot say that the Turing Machine is going to read the beginning of
its input, and as soon as it accepts, that gives you x. No. That’s plain wrong. When a
Turing Machine takes a string as input, it uses the whole string to decide whether it accepts
it or not. In other words, if you run the Turing Machine on a partial input, you cannot start
from where it stopped and feed it the rest of the input, because that remaining part (or the
absence of) will change its computation.

d) Kleene Closure For memory, L∗ = ∪i∈NLi. We are going to proceed like in part c).
First we non deterministically split the input w into w = w1w2 . . . wk, then we simulate M
on each of the wi. If all accepts, then we accept. The non deterministic splitting guessed
the decomposition. Similarly, we can adapt the deterministic, enumerative version.



You cannot show closure using concatenation and union, because here you have an infinite
number of unions, and you can’t go there using induction.

e) Homomorphism Taken from http://www-db.stanford.edu/˜ullman/ialcsols/sol9.html
Consider the case where L is RE. Design a NTM M for h(L), as follows. Suppose w is the
input to M . On a second tape, M guesses some string x over the alphabet of L, checks that
h(x) = w, and simulates the TM for L on x, if so. If x is accepted, then M accepts w. We
conclude that the RE languages are closed under homomorphism.
However, the recursive languages are not closed under homomorphism. To see why, consider
the particular language L consisting of strings of the form (M, w, ci), where M is a coded
Turing machine with binary input alphabet, w is a binary string, and c is a symbol not
appearing elsewhere. The string is in L if and only if M accepts w after making at most i
moves.
We have defined this particular language to break the closure of recursive language. First
lest check that indeed L is recursive. Well, yes it is, because to see whether a string is
in the language, we have to simulate M on w for at most i moves. So you can stop the
machine after i+1 moves and know for sure you should reject. However, if we apply to L the
homomorphism that maps the symbols other than c to themselves, and maps c to ε, we find
that h(L) is the universal language, which we called Lu. We know that Lu is not recursive.
So in three words, L is recursive, h(L) = Lu is RE but not recursive. So recursive languages
are not closes under homomorphism.

Another version to show that recursive languages are not closed under homomorphism. Con-
sider a Turing Machine M , whose language L is RE. Now consider the language L′ defined
as the sequence of computation the TM does when it accepts a string. Actually, put hats
on the first ID. So you have l = q0x̂1x̂2 . . . x̂n ` x′1a1x2 . . . xn ` . . . where w = x1x2 . . . xn

is the input to M . The language is clearly recursive. Just check whether the transitions
respect the transitions of M . Consider the homomorphism h that maps hatted symbols to
their version without hats, and everything else, including `, to ε. Clearly, h(l) = w. So
h(L′) = L. In other words, you have a homomorphism between a recursive language and a
RE language.

f) Inverse Homomorphism Both recursive and RE languages are closed. Consider the
following Turing Machine: it takes its input w. It should tell whether w ∈ h−1(L). That’s
easy: compute h(w). We for sure have w ∈ h−1(L) ⇒ h(w) ∈ L because that’s the
definition of h−1. Now test if h(w) ∈ L. If so, then w ∈ h−1(L); if not, it isn’t.
You cannot say you just apply part e) here. First because I don’t know what that means,
two because h(h−1(L) = L is true, but what you are using is h−1(h(L)), and that’s usually
not the same as L. (Note the difference in the oder between h and h−1. Consider L to
consist of only one string, or in fact whatever you want, finite, recursive, RE, etc. h to map
everything to 0. h(L) = {0} but h−1(h(L)) = Σ∗.

http://www-db.stanford.edu/~ullman/ialcsols/sol9.html#sol92

