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Lecture 6: Principal component analysis CS 3780/5780, Sp25
Tushaar Gangavarapu (TG352@cornell.edu)

In the previous lecture, we introduced the unsupervised regime and saw two clustering algo-
rithms: k-means (non-probabilistic) and mixture of Gaussians (probabilistic). Let’s recap the
mixture of Gaussians before proceeding.

Recap (mixture of Gaussians). The goal was to make “soft” assignments (unlike in k-means
where we said, each point belonged to a single cluster). To this end, we assumed that the data
we observe was generated by k Gaussians and asked: “What is the probability that a point, x(j),
was generated by Gaussian-i, given that we actually observed the point in our data?”

Our algorithm to recover these Gaussians was as follows (for k = 2):

(a) Guess the parameters of the Gaussians: µs and σs, and the probability of picking each
Gaussian, p.

(b) Compute the soft assignments: P (Zj = i|xj;µ(i), σ(i), p(i))1

(c) Recompute the parameters µs and σs by taking a weighted average (of all points for µs
and of deviations from µ for σs); estimate p as the average probability, P (Zj = i|xj).

In this lecture, we will continue in the same regime but a slightly different setting, where we are
interested in finding a subspace (and not clustering), if it exists, in which data approximately
lies—specifically, we will discuss the principal component analysis (PCA).

As a motivating example, consider that we have a dataset of cars, and we collected d features
for each car, {x1, . . . , xd}2—max speed, turn radius, etc. Now, unbeknownst to us, say x(10) is
the car’s max speed in mph and x(26) is the max speed in kph. One can easily argue that our
data really lies in a d− 1-dimensional subspace. The question we are going to ask is if there is
an automated way of removing such redundancy in our data.

Wine darkness (x1)

A
lc

oh
ol

co
nt

en
t(
x
2
)

Reds

Pinks

Whites

Wine darkness (x1)

A
lc

oh
ol

co
nt

en
t(
x
2
)

u1

u2

1One thing to note here is that when we say P (x(j)|Z(j) = i), we don’t mean the probability that Gaussian
takes a specific value, x(j); what we mean is that it’s the probability density or likelihood of x(j) under Gaussian-i,
which can be computed using the “1/

√
2πσ(i) · · · ,” which tells us how “dense” probability mass is around x(j),

but not the probability of any single point.
2We will use subscript to denote the feature index and superscript to denote the data index.
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[CS 3780/5780] Lecture 6: Principal component analysis

While the toy example drives the motivation, let’s look at a less contrived example of wine
tasting,3 where x1 is the darkness of the wine and x2 is the alcohol content in the wine.

As it turns out, x1 and x2 are strongly correlated, and indeed, one might realize that data actually
lives along the u1 axis (shown above to the right). This is equivalent to saying what is the
direction that gives the best possible reconstruction of my data? The question now is how do
we compute this u1 direction?

1 Preprocessing the data

The first thing we are going to do is to center our data by zeroing out the mean as follows:

µ =
1

n

n∑
j=1

x(j); x(j) ← x(j) − µ.

x1

x2

−→
x1

x2

x1

x2 u2

u1

µ

The key problem in working with data with suffi-
ciently large mean is the direction of µ becomes
the most-interesting axis, i.e., the direction that
gives the best possible reconstruction is the µ axis.
In the figure to the right, the best approximation is
by the mean vector, but we are more interested in
understanding the relationship between x1 and x2.
(We will make this more concrete once we pose
PCA as an optimization problem.)

Next, we may need to normalize the data such that
each feature has unit variance:

σ2
i =

1

n

n∑
j=1

(x(j) − µi)
2; x(j) ← x(j)

σi

,

which ensures that different features are treated on the same scale. For example, wine darkness
is measured in nanometers (typically in hundreds), while alcohol content is measured in alcohol-
by-volume (percentage)—variance normalization makes them more comparable.

3Inspired from https://stats.stackexchange.com/a/140579.
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2 Principal component analysis

2.1 Distance to the chosen directions
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A given point in our 2D coordinate system, x(j) = (α1, α2), indicates that we walk α1 steps
along the x1 direction and α2 steps along the x2 direction, starting from (0, 0).

Now, consider different axes shown in red, u1 and u2 are unit vectors in each direction, how do
we compute the coordinates of x(j) in this tilted coordinate system? Now, α1 would simply be
the closest point to x(j) on u1-axis and we can compute it as:4

α1 = argmin
α
∥x(j) − αu1∥2

= argmin
α

(x(j) − αu1)
T (x(j) − αu1)

= argmin
α

x(j)Tx(j) − 2αuT
1 x

(j) + α2uT
1 u1

= argmin
α
∥x(j)∥2 − 2αuT

1 x
(j) + α2 ∥u1∥2︸ ︷︷ ︸

=1

.

To compute the minimizer we simply compute the derivate of the above with respect to α and
set it to zero:

∇α∥x(j)∥2 − 2αuT
1 x

(j) + α2 = −2uT
1 x

(j) + 2α
set
= 0,

which gives us α = uT
1 x

(j)—the closest point to x(j) on u1-axis is ⟨x(j), u1⟩. This may seem
obvious, but it’s important to note nonetheless. Similarly, we can solve for α2 = ⟨x(j), u2⟩.
Now, one final thing to note is that x(j) = α1u1 + α2u2, i.e., x(j) can be expressed as a linear
combination of u1 and u2, which are often referred to as the basis vectors.

We can extend the above from 2D to n dimensions, and ask: “What is the closest point to x(j)

on some k-dimensional hyperplane?”—this would simply involve finding α1, . . . , αk as

argmin
α1,...,αk

∥x(j) −
k∑

i=1

αiui∥2.

We leave it as a self exercise to solve this to see that αi = ⟨x(j), ui⟩.

4When we say α1 here, what we really mean is α(j)
1 , since α1 is dependent on x(j); we will make this more

explicit in the following sections.

3/10



[CS 3780/5780] Lecture 6: Principal component analysis

2.2 PCA as an optimization problem
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∥x(j) − α1u1∥
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Recall that our motivation is to find a principal di-
rection that explains our data, or equivalently, the
direction that facilitates best possible reconstruc-
tion. More precisely, if we could pick any u1,
which would you choose? We can reason about
this in terms of “how much remains unexplained
in our data by choosing u1.” This way of thinking
is important if our goal is dimensionality reduc-
tion, where we reduce hundreds and thousands of
features into two or three, or even ten features.5 In
the example to the left, x(j)−α1u1 is unexplained,
and is often referred to as the residual, and we will
denote it as r(j).

One way to think about this task of finding u1 is
that we want choose u1 to minimize the residual. In case of a single instance dataset, this
becomes trivial—we just choose u1 as the line passing through origin and x(1). Let’s consider
a small dataset of two points, x(1) and x(2), and two directions, u1 and u2 as shown below:
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(j)
1

r
(ℓ)
1
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Centered data (r(j)2 = r
(ℓ)
2 = 0)

As an aside, we show why mean centering is crucial. Looking at the right figure, we note that
the residual using u2 is zero, meaning that u2 reconstructs the data perfectly. Intuitively, this
makes sense; if we were to use u1, both x(j) and x(ℓ) would be represented the same, making
them indistinguishable along u1.

Before making this more rigorous, we make a simple observation that minimizing the residuals
is equivalent to making α values as large as possible. While this may not seem as obvious
at first, the (hand-wavy6) argument is as follows: the residual vector and α

(j)
i ui form the non-

5An important distinction to make here is that we are not talking about removing features, we are instead
talking about coming up with new directions, which are linear combinations of old directions, that offer best
possible reconstruction of our data.

6See https://stats.stackexchange.com/a/136072 for a more formal proof.
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hypotenuse sides of a right triangle, meaning, sum of squared residual and ∥α(j)
i ui∥2 = (α

(j)
i )2

is constant, since the hypotenuse (distance between origin and x(j)) doesn’t depend on the
orientation of ui.

In summary, we have two ways of finding the (first) principal direction or component:

(a) minimize the residuals,

argmin
u1∈Rd

∥u1∥=1

1

n

n∑
j=1

∥x(j) − α
(j)
1 u1∥2,

OR equivalently,

(b) maximize the α values,

argmax
u1∈Rd

∥u1∥=1

1

n

n∑
j=1

(α
(j)
1 )2.

In this notes, we will proceed with (b), but optimizing (a) should yield the same result (refer
to (Shalizi, 2008) for proof). Why?—maximizing α values has the same effect as saying that
we want to retain as much “spread” (or, variance) as in our original data. Now, recall that
α
(j)
1 = uT

1 x
(j) = x(j)Tu1:

n∑
j=1

α2
1 =

1

n

n∑
j=1

(uT
1 x

(j))2

=
1

n

n∑
j=1

(uT
1 x

(j))(uT
1 x

(j))

=
1

n

n∑
j=1

(uT
1 x

(j))(x(j)Tu1)

=
1

n

n∑
j=1

uT
1 (x

(j)x(j)T )u1

= uT
1

(
1

n

n∑
j=1

x(j)x(j)T

)
︸ ︷︷ ︸

Σ

u1.

Now, our optimization is as follows:

argmax
u1∈Rd

∥u1∥=1

uT
1Σu1,

where Σ = (1/n)
∑n

j=1 x
(j)x(j)T . Observe that for x(j) ∈ Rd, we have Σ ∈ Rd×d. We will

come back to what the significance of Σ is later, for now, let us solve the optimization problem,
subject to ∥u1∥ = 1. This is often what is referred to as a contrained optimization problem
and is solved using the method of Lagrange multipliers.7 We will absorb the constraint into the

7https://en.wikipedia.org/wiki/Lagrange_multiplier.
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optimization by introducing a new parameter, λ, as follows:

L(u1, λ) = uT
1Σu1 − λ (uT

1 u1 − 1)︸ ︷︷ ︸
constraint

.

Now our optimization is:

argmax
ui

[
argmin

λ
L(ui, λ)

]
,

and we can solve for u1 by taking the derivative of L with respect to u1 and setting it to zero:

∇ui
L(ui, λ) = Σui − λui

set
= 0.

Hence, we have Σu1 = λu1, which is essentially the eigenequation, i.e., λ is an eigenvalue of
Σ and u1 is the corresponding eigenvector.

Okay, a d × d real symmetric matrix has d real eigenvalues (proof in Appendix B)—so which
eigenvector?8 As it turns out u1 is the eigenvector corresponding to the largest eigenvalue.
This is nontrivial (and should be surprising if you haven’t seen it before!). If we substitute the
solution, Σu1 = λu1, back in our objective function, we get

uT
1Σu1 + λ (uT

1 u1 − 1)︸ ︷︷ ︸
constraint: ∥u1∥=1

= uT
1 Σu1︸︷︷︸

=λu1

= λuT
1 u1 = λ.

Recall that the objective of the constrained optimization was to maximize the above, which
equals λ. Hence, λ has to be the biggest lambda, and consequently, u1 is the eigenvector corre-
sponding to the largest eigenvalue.

Once we know u1, we can represent x(j) in our new 1D system as x(j) = α1 = ⟨u1, x
(j)⟩. We

can “bulk” process this through a matrix multiplication as:
−x(1)T−
−x(2)T−

...

−x(n)T−


︸ ︷︷ ︸

Rn×d

u1︸︷︷︸
Rd

=


x(1)Tu1

x(2)Tu1
...

x(n)Tu1


︸ ︷︷ ︸

Rn

=


α
(1)
1

α
(2)
1
...

α
(n)
1



In summary, to find the first principal component of maximum variation, we (1) normalize the
data to zero mean and unit variance, (2) form Σ, (3) compute its eigenvalues and eigenvectors,
and choose u1 as the eigenvector corresponding to the largest eigenvalue, and (4) compute α

(j)
1

for each x(j).

Using numpy.linalg.eig to compute the eigenvectors, we can compute u1 in the follow-
ing three lines of code:

import numpy as np

# Generate random data with 100 samples and 2 features.
X = np.random.rand(100, 2)

# PCA to transform the data using the first principal component.
X -= X.mean(0) # mean=0, np.random.rand: variance=1

8Strictly speaking, the covariance matrix, Σ, is formed by adding n rank-one matrices, meaning rank(Σ) ≤ n.
Hence, the rank of d× d covariance matrix is min(n, d).
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_, eigvecs = np.linalg.eig(X.T@X / X.shape[0]) # computes all eigenvectors
X_pca = X@eigvecs[:, 0] # "bulk" compute alpha values

Extension beyond finding the first component. In our simple case of 2D, we only needed the
(first) principal component of variation. In practice, however, we have hundreds and thousands
of features, and are looking to reduce it tens. To yield k principal components, we can optimize:

argmin
u1,...,uk∈Rd

∥ui∥=1,uT
i uℓ=0

1

n

n∑
j=1

∥x(j) −
k∑

i=1

α
(j)
i ui∥2,

or equivalently,

argmax
u1,...,uk∈Rd

∥ui∥=1,uT
i uℓ=0

1

n

n∑
j=1

k∑
i=1

(uT
i x

(j))2.

This yields u2 to be eigenvector of Σ with the second largest eigenvalue, u3 to the eigenvector
of Σ with the third largest eigenvalue, and so on. Hence, the top-k eigenvectors of Σ are the k
principal components of maximum variation.

Aside: Covariance. Notice Σ = (1/n)
∑n

j=1 x
(j)x(j)T to be the empirical covariance matrix

of the data, assuming the data has zero mean (which we can, because we processed it as such).
It essentially computes the covariance between every pair of dimensions, and is a d× d matrix
for x(j) ∈ Rd.

We are interested in noting what happens to the covariance matrix after we apply PCA. With
this in mind, let us look at the PCA-transformed data using k principal components:

−x(1)T−
−x(2)T−

...

−x(n)T−


︸ ︷︷ ︸

Rn×d

 | | |
u1 u2 . . . uk

| | |


︸ ︷︷ ︸

Rd×k

=


x(1)Tu1 x(1)Tu2 . . . x(1)Tuk

x(2)Tu1 x(2)Tu2 . . . x(2)Tuk
...

... . . . ...

x(n)Tu1 x(n)Tu2 . . . x(n)Tuk


︸ ︷︷ ︸

Rn×k

.

Observe that what was previously x(j) is now UTx(j) ∈ Rk, where U =
[
u1 . . . uk

]
∈ Rd×k.

Now, the updated covariance matrix is

1

n

n∑
j=1

x(j)(x(j))T =
1

n

n∑
j=1

(UTx(j))(UTx(j))T = UT

(
1

n

n∑
j=1

x(j)x(j)T

)
U = UTΣU.

Now, noting that ΣU = ΛU, where Λ = diag(λ1, . . . , λk), we have the updated covariance
matrix as UTΛU. This means that non-diagonal entries of the updated covariance matrix are
zeros, while the diagonal entries are λis. This is quite interesting because it tells us that the
principal components are uncorrelated!

3 Notable asides

3.1 Data reconstruction

In our 2D example, the PCA transformation using u1 can simply be written as α(j)
1 = uT

1 (x
(j)−

µ). Now, we can reconstruct x(j) from α
(j)
1 as u1α

(j)
1 +µ. This can be generalized to k principal
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components, transforming d-dimensional data, where x(j) can be reconstructed from z(j) =
UTx(j) ∈ Rk as Uz(j) + µ.

What happens if k = d, i.e., we had as many principal components as the data dimensions?
Then, the reconstruction Uz(j) + µ = UUTx(j) + µ. Observe that U is now the orthonormal
basis of Rd, i.e., UUT = UTU = I. Hence, we would have perfect data reconstruction.

3.2 On the choice of the number of components

The short answer: unfortunately, there is no right way of choosing k, the number of components,
and are often determined by various other factors (e.g., how many new dimensions can we
analyze for interpretability).

That said, we can always choose the number of clusters based on how much reconstruction
loss we are willing to incur. Here, we could follow an approach similar to the elbow method
discussed in k-means, where we choose k to be the value beyond which the gains in variance
(or, reductions in residuals) is minimal.

4 Conclusion

In this lecture, we saw PCA as a method of choosing the principal component of variation
(which can be extended to k components).

PCA has several applications, and an obvious one (which we have used throughout this lecture
notes as a base motivation) is dimensionality reduction. A non-obvious extension of this is
visualization—for instance, if we reduce our cars data down to two dimensions, we could plot
the data in 2D and see which cars are similar to each other, what groups emerge, etc. Another
standard use of PCA (and dimensionality reduction in general) is to preprocess the data to
reduce dimensionality before running a supervised learning algorithm.

One of the most famous applications of the PCA is face recognition using “eigenfaces” (Turk
et al., 1991).9 Each face (an image) is h × w-dimensional (in the demo, we use 50 × 37
images, resulting in 1, 850-dimensional representations), with each coordinate indicating the
pixel intensity value. Using PCA, we can represent each image in much lower dimensions.
We show the top-10 principal components (or, eigenfaces) obtained from running PCA on the
Labeled Faces in the Wild dataset with k = 300 (16% of the total features):10

In running PCA, we observe that the principal components or
eigenfaces retain the interesting and systematic variations be-
tween faces that captures what a person really looks like, and
not the noise in the images (e.g., lighting variations). We then
evaluate this by reconstructing the images in this PCA-reduced
subspace, using the steps outlined in §3.1; an example reconstruction is shown to the right.

9Interactive demo available here: https://colab.research.google.com/drive/1UJ2JSXaiX
HIDzpmTMsbDwHI17SpmZGn4.

10https://scikit-learn.org/0.19/datasets/labeled_faces.html.
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A Notation

D The training dataset of n samples
n The number of training samples in the dataset D
d The number of feature dimensions
k The number of principal components
x(j) ∈ Rd The d-dimensional (feature) vector associated with the j-th training sample
x
(j)
ℓ ∈ R The ℓ-th element of x(j)

µi The mean computed in the i-th dimension
σi The standard deviation computed in the i-th dimension
Σ The empirical covariance matrix
ui ∈ Rd The i-th principal component
α
(j)
i The ui-th coordinate of the closest point to x(j) on ui

Au = λu Then, u is an eigenvector of A, with λ as the corresponding eigenvalue
U ∈ Rd×k A matrix of k principal components, uis
Λ A diagonal matrix with diagonal entries being the sorted eigenvalues—the

first diagonal entry is the largest eigenvalue

B Eigenvalues of a real symmetric matrix

Given a real symmetric matrix, Σ ∈ Rd×d, we wish to show that Σ has d real eigenvalues.11

Let us first show that every eigenvalue of Σ is real. Recall that uHu is real for any complex u.
For some eigenvalue, λ of A, we have:

λ(uHu) = uHλu = uHΣu.

Now, taking conjugate on both sides, and noting that Σ is real and symmetric, i.e., ΣH = ΣT =
Σ, we have

λ̄(uHu) = uHΣHu = uHΣu = λ(uHu).

Since u ̸= 0, we have λ̄ = λ, i.e., λ is real. Since we didn’t show this for some specific λ, we
can conclude that all eigenvalues of Σ are real.

As for why d eigenvalues?—recall that we obtain eigenvalues from solving the characteristic
polynomial, det(Σ − λI) = 0, which is a polynomial of degree d. Now, from the fundamental
theorem of algebra, we realize that a d-degree polynomial will have d roots, including multi-
plicity.

11Note that the covariance matrix is a real symmetric matrix.
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