NOTE: This is a draft for [CS 3780/5780] Lecture 5: Unsupervised learning. Do not
distribute without explicit permission from the instructors.

Lecture 5: Unsupervised learning CS 3780/5780, Sp25
Tushaar Gangavarapu (TG352@cornell.edu)

In this lecture (and the next), we will look at a different regime than supervised learning—
unsupervised learning. We will make this more concrete momentarily, in essence, we are going
to tackle the fundamental problem of “what do we do when we don’t have labels?” One of
the traditional examples of such unsupervised learning is the cocktail party problem, where the
individual speech signals are separated from a recording of people talking simultaneously in a
room.

Let’s make the setup for unsupervised learning more concrete: given an unlabeled dataset (no
ys), D = {x1)]|1 < j < n}, we want to uncover the (latent) structure in the data (if it exists).

X9 o)

©)
O O

O

O O

> L1 > L1
Supervised setting Unsupervised setting
(includes class labels) (no class labels)

So, what can we expect in this no-label regime? In case of supervised learning, we can argue
why a particular separating line (or, hyperplane) is the “right” one and what guarantees it gives
us on the algorithmic convergence (e.g., Perceptron convergence depends on the margin width,
7). The lack of labels makes it difficult for us to make similar guarantees or statements on what
it means to find the right structure. Consequently, we are going to:

(a) allow for stronger assumptions—in supervised setting, the assumption was that the classes
are separable; in unsupervised setting, we are going to assume that there exists some un-
derlying latent structure in the data (e.g., assume our data is generated a certain way),

(b) accept weaker guarantees—in Perceptron, we assumed that a w* exists and realized how
fast we can reach w”*, starting from some w; we cannot make such statements in the
unsupervised setting (e.g., how many clusters is the correct number of clusters?).

Aside. While we noted the ends of the learning spectrum with supervised on one end and
unsupervised on the other, there are other, recently-popularized flavors of “less” supervised
learning which include: (a) “weak” supervision, where noisy or lower-quality labels are used
to create large training datasets for training commercial models; (b) self-supervised learning,
a.k.a., the large language model regime, where we train on a simpler task (e.g., predicting the
next word), which can then be used for other downstream tasks (e.g., sentiment classification).

1/13

mailto:TG352@cornell.edu

[CS 3780/5780] Lecture 5: Unsupervised learning

While we will not cover these regimes in this class extensively, it is still interesting to realize
the ties of these now-widely-used approaches to unsupervised learning.

1 K-means clustering

Given the number of clusters, k,' our goal is to find a good clustering if the data points. Now, a
natural question is to ask what it means for clusters to be “good”?

To X2
z(®) 2(6)
O O
O O O O
z®) e
O O
O O O O
> T1 > 11
Two “good” clusters (k = 2) Two clusters (k = 2)

(As the name hints,) in k-means, we are going to define “good” clustering based on the distance
of the cluster mean (or, centroid) to the points in the cluster. This goes back to our notion of
“similar points points are labeled similarly” in k-nearest neighbors. In the example above, on
the right, 23 is closer to the centroid of the green cluster, than it is to the blue cluster.

1.1 The clustering algorithm

Let us formalize this: Given n data points, ", ..., 2 with 20) € R? and k, the number
of clusters we are looking for, our goal is to find an assignment of points, xWs, to k clusters,
in a way that minimizes the distance of each point to the center of its cluster. We will denote
this assignment as C @) =4, indicating that point z() belongs to cluster ¢, where © = 1,... k.
In the example above, on the left, we have) in cluster-1 (green) and 2 in cluster-2 (blue);
or, equivalently, C® = 1 and C®) = 2. In some sense, we are performing hard assignment of
points to clusters, i.e., a point can belong to a single cluster.

So, how do we find the clusters? A natural question to ask here is if there is a polynomial-time
algorithm to assign n points to k clusters, and as it turns out, this is an NP-hard problem.? Let’s
instead take an iterative approach to facilitate cluster assignments:

(a) Randomly assign k cluster centers, 1(")s.

(b) Next, (re)assign each point, 29 to a cluster based on the distance of the point to the
cluster center. When using ¢ (or, Euclidean) distance,’ this is mathematically equivalent

'We will come back to the modeling decision of selecting k later; but, note that one can intuitively choose the
number of clusters a priori by simply looking at the data (e.g., in a class setting, one can use k = 2 to cluster 3780
and 5780 students).

https://link.springer.com/content/pdf/10.1007/s10994-009-5103-0.pdf.

2/13

https://link.springer.com/content/pdf/10.1007/s10994-009-5103-0 .pdf

[CS 3780/5780] Lecture 5: Unsupervised learning

to

CY = argmin ||z — x|
i=1,...k

(c) Compute new cluster centers based on the points assigned to each cluster as
o _ Z;’:l 1{C(J') — Z’}ﬁ(j)
S e =i}

where 1{-} is the indicator function, 1{C%) = i} = 1 if point () belongs to cluster-i, 0
otherwise.

We will repeat steps (b) and (c) until the cluster assignments do not change, at which point, we
note that the k-means algorithm has converged.

T2 To
O 6]
O O /1<2 ® O o
e
o ® ©]
e
(@} (@} O e O
Iu(l) [] %
> L1 > T1
Randomly initialize centers and Recompute the centers (c)
assign points to clusters (a, b)
T2 To T2
O O 6
pu? o, %)
e o o 5" o0
(6] O (6]
)
e ° o)
O eo0 o® o o ©
S T y T > L1

Reassign points to clusters (b) Recompute the centers (c) Reassign points to clusters (b)

(no change in assignments)

1.2 Properties of K-means

While such an iterative approach makes sense intuitively, it is not obvious that the algorithm
always converges, i.e., is there some setting in which the cluster means simply oscillate? To
understand this, let us look at the cost function that measures the distance of each point to its
centroid:

= : ()
JC,p) = [la) =
j=1

3We saw in “P0: Getting started” that ||z(!) — 2(?)||, computes the Euclidean distance between 1) and z(2).

3/13

[CS 3780/5780] Lecture 5: Unsupervised learning

Observe that the k-means algorithm minimizes J with respect to C by fixing y (assign points
to clusters in step (b)), and then minimizes J with respect to u by keeping C fixed (recompute
new centers in step (c)). Hence, J must decrease monotonically (either decreases or remains
the same), and the value of J must converge. While unlikely in practice, it is possible for k-
means to oscillate between two different clusterings—different values of C and/or p result in
the same J. For instance, in the following setup, J is always the same and k-means oscillates
between two assignments, while the centroids remain the same.

To T2
O O O O O O
O O
,u,(1> ° 0/1/(2) /L(l). .M(Q)
O O
O ©) ©) ©) O O
> L1]
For the cluster assignments, For the computed centroids,
compute centroids (step (c)) assign clusters (step (b))

The next question to ask is if we can find a global minima of J?—no! As a simple exercise,
we show below that different starting centroids results in different clusterings. As noted earlier,
the problem of k-means is an NP-hard problem, thus using an exact algorithm to calculate the
centroids doesn’t run in polynomial time. (Recall that we said we were going to make stronger
assumptions and accept weaker guarantees in unsupervised settings.)

) T2

©) 0\/; ©) ©)

e
e
C—e ®—o

M<2)
ey

7 O] O] O]

> I > 11
Optimal clustering Sub-optimal clustering

Initializing cluster centroids. In practice, we randomly choose £ training samples and assign
their values as the initial cluster centers (in step (a)). While this strategy works fine, if you
are worried about getting stuck in local minima, one common strategy is to run the k-means
algorithm with different initial centroids, (s and choose the clusterings that achieve lowest .J.

4/13

[CS 3780/5780] Lecture 5: Unsupervised learning

1.3 On choosing the number of clusters

To o)
O O
O O O O
O O O O
O O O O
> L1 S X1
k=2 k=4

There is no right way to choose the value of £; domain knowledge and the application-specific
requirements often help. For instance, how many clusters to form in this lecture hall? Split by
course code—3780 vs. 57807 Or, split by seating columns?

That said, one strategy we can adapt to potentially avoid over-splitting clusters is the elbow
method, which is as follows:

(a) Run k-means clustering for different values of k.

(b) For each k, upon convergence, compute the cost estimate, .JJ(C, 1) (we will have to aver-
age the values of J over multiple runs, to account for the randomness in cluster initializa-
tion).

(c) Choose the “elbow” point as the point beyond which the decrease in .J is minimal.

Note: Increasing k will always decrease J (why?—think: what happens if each point is its
own cluster?), but the gains are bigger until we realize the “true” k. In the example below, we
observe the biggest drop from k£ = 1 to k = 2, beyond which the drop is insignificant; hence,
we can choose k = 2.

I T To Ty
e
PTT? NTCAY 0,0 oeo0
(O (o] o (0] o o O e O
H)
° e u® /
o o 0,m0 o e o0 o e o0
[]
o o O o O e O O ® O
1® e
r1 T Ty X1
k=1,J=30 k=2,J=4 k=3,J=3 k=4,J=2

2 Mixture of Gaussians

As a motivating example, let us consider the following measurements of spectral energy distri-
butions from three different light sources (say, stars, galaxies, and quasars):4

“Inspired from (Miller et al., 2015).
5/13

[CS 3780/5780] Lecture 5: Unsupervised learning

Zphotometry

A4

$ Zspectroscopy

Cluster means from k-means

Are the clusterings in the above depiction “good”?

Recall that in £-means, we made no assumptions about how the data was generated, and we
made “hard” assignments. In this section, we will see, what feels like, a generalization of the
k-means. The goal is the same as before: assign each data point (a reading) to a cluster (a
light source), but we are going to make “soft” assignments. Instead of saying C) = i (or,
21 belong to cluster-i), we are going to model P(ZY) = i|z()), which notes the posterior
probability that 2'9) belongs to cluster-i, given that we observed z7).

You can think of Z as a multinomial random variable the indicates the outcome of rolling a
k-faced die.

2.1 Assumptions

We are going to assume that there are many clusters (or, light sources), and we know how many
sources there are, i.e., we know k. Additionally, we are going to assume that the data generated
by each light source is well modeled as a Gaussian—in 1D, this is characterized by p and
o?—and that each light source has different intensities (or, x4 and ¢%).> Note that we are not
assuming any sampling frequency, i.e., all light sources generate the same number of photons.
This is often referred to as the “unknown” mixture (of Gaussians).

In summary, we assume that the data we observed is a result of £ light sources with different,
unknown 4 and o2, and we do not know how often they are sampled.

2.2 The mixture of Gaussians model

Two Gaussians generating the observed data (the “god” view)

This Gaussian assumption can still work as an approximation even when the underlying distribution is not
Gaussian, since a mixture of Gaussians can approximate many continuous distributions arbitrarily well, given
enough components.

6/13

[CS 3780/5780] Lecture 5: Unsupervised learning

For simplicity, let us restrict our discussion to the 1D setting. Now, let us assume that there are
two Gaussians (two light sources) generating data, with means ;! and p(?). Further, assume
we sample from ;(")-Gaussian with probability p and ;(?-Gaussian with probability 1 — p.

In the above example, we have p) = 4, = 7 and p = 1/3. Consequently, the prior (or,
belief) P(Z9) = 1) = 1/3 and P(ZV) = 2) = 2/3.

Aside. What if we knew that specific data points came from specific sources? For example,
consider the following assignment of points:

Then, all we need to do to estimate our two Gaussians is compute the means and variances
of the points belonging to a specific cluster. Additionally, based on the number of samples
in each cluster, we can estimate p. For convenience, let’s collect all our parameters as © =
(D, 1@ 6M 52 pl. Now, we can estimate our posterior P(ZV) = i|z(7)) as:®7
x(i)|z(j) =i @)P(Z(j) =1;0)

P(z() '

P29 = iz, @) = 2

Note that by our assumption, 20| Z0) = §:© ~ N (4, ¢®?), which can be computed for 2(9)
and the marginal P(z)) can also be computed as:

k
Pz = Zp(x(j)w(j) = (;0)P(ZY) = ¢, 0)

(=1
= P(zP|ZY) = 1;,0)P(ZY) = 1;0) + P(zV|Z2Y) = 2,0)P(Z) = 2;0)
1 2

g g

N(p® ,cM?) N(p® ,c@?)
All this to say that if we knew which points came from which light source, we can then make
our soft assignments by estimating P(Z\) = i|z()).

2.3 Formalization

Let us formalize the setup so far: Given n data points, 2, ..., 2 with) € R? and k, the
number of clusters we are looking for, our goal is to estimate P(Z\9) = i|2()), the probability
that 219 belongs to cluster-i, given that we observed z7).

Now, according the mixture of Gaussians model, we have: ZU) ~ Multinomial(®) (which
simplifies to Bernoulli(p) for & = 2) that indicates the outcome of picking a cluster, and
P(Z\Y) =) indicates the (prior) probability of picking a cluster-i. From the Gaussian assump-
tion, we have)| Z\) = i ~ N(u1, o). One final note is that we don’t observe Z/) in our data,
i.e., it is a “latent” variable, and the data we observe are the remnants of this data generation
process.

°In the notation below, we clump all parameters into © for typesetting convenience, if we were being more
precise, we would instead write: P(z)|Z) = i; u® ¢(®) and P(ZU) = i;p).

"To be strict in our notation, we use P(z())|ZU) = 4; ©) to indicate the probability density (not probability)
or likelihood of (/) under Gaussian-i, which can be computed using the “1/v/27c(®) ... which tells us how
“dense” probability mass is around 2(/), but not the probability of any single point.

7/13

[CS 3780/5780] Lecture 5: Unsupervised learning

The idea here is that of all the possible estimates for model parameters, u(i)s, o@Ws, and p(i)s n
a way that maximizes the likelihood of the data we observed. We will formalize this notion of
maximizing data likelihood into a framework that can used in various settings, in the upcoming
weeks. For now, think of this as reverse engineering the data generation process based on the
data observed.

Example. To solidify our understanding of what’s going on, let us consider a simple example.
(You’re gonna have the “god” view running in the back of your mind.) Consider p) = 0.6

(meaning, p@ = 1 — p®) = 0.4), u® = 3 and u®@ =6, cM* = s@? = 1.

Iu(l) N(Q)

T s

S > T
(a) Pick a Gaussian with P(Z) = 1) = p() = 0.6
(b) Sample a point from the chosen Gaussian:)| Z0) = i ~ N/ (u®, %)
(c) Repeat steps (a), (b)

2.4 The algorithm

While we outline the algorithm, we want you have k-means to be in the back of your mind.
Precisely, the steps of k-means are: (a) guess the centroids, (b) make cluster assignments based
on the centroids, and (c) recompute the centroids based on the clusters (and repeat (b), (c)).

The clustering approach using the mixture of Gaussians is as follows:

(a) Randomly initialize the values of ©, i.e., u"), u®, o™ 3 pin our case.

(b) Compute the posterior, P(Z) = i|z\9);©), indicating the probability of () having
generated by Gaussian-i, given that we observed the point (/).

We can compute this posterior using the Bayes flip:

=exp(— ()~ /20%) /Vame® =por1-p
DD 7D _i0y P79 — o)
P(Z9) = i|zV); 0) = P22V = 27@). P(ZY) =14;0)

B P(:v(j)]Z(j) = i;0)P(ZY) =4;0)
C px P(aW]Z0) =1;0) + (1 — p) x P(z0)]|Z0) = 2;0)"

Once computed, we have “soft” assignment of points to clusters.

(c) Update the parameters, O, based on the (soft) cluster assignments. (Recall that this is
exactly the same setting as our previous exercise where we assumed that we knew which
samples came from which Gaussian.)

8/13

[CS 3780/5780] Lecture 5: Unsupervised learning

n

1 A A
- ZP(Z(J) =1|2W); p® =1—p,

n 4
(U:ZXﬂpnglwmﬂﬂ.Mmziﬁimzm:ﬂﬂMﬂﬁ
EﬁlfﬁZ@::Hﬂﬁ)’ > p((ﬁzzmug‘
L2 _ S P(Z9) = 1|z D) (2D —)2 o S P2 _2|x) (20) — ()2
Zj:l P(Z(J = 1’.1} J)) ! Z P(— 2‘1'(3)

We will repeat steps (b) and (c) until the cluster assignments do not change, at which point,
we note convergence. Take a moment to realize how algorithm is similar to k-means, except
we now have soft assignments via P(Z\) = 1|21)) instead of 1{C") = i}. Furthermore, note
that this follows a similar pattern of coordinate descent from k-means, meaning this clustering
scheme is also susceptible to local optima.

Now, let’s take this setting to the extreme: what happens if all our Gaussians had ¢ — 0, i.e.,
our variances are infinitesimally small? Observe the behavior of

1 (29 — ()2
e ()
2o (@) 20 (")
as 0 — 0. For 29 = ;0 i.e., point is the cluster center, we have P(27/|Z) = i) — inf.
And, for points that are not clusters, we have P (xj |Z) = i) — 0. This means, our Gaussian
clustering model collapses to k-means clustering with hard assignments, where each point is

assigned to the closest centroid. For this reason, we view mixture of Gaussians clustering as a
generalization of the k-means.

P(a:j]Z(j) =1i) =

Aside. If you’re interested in learning how we came about the estimates in step-(c), see Ap-
pendix C; however, as noted earlier, we will cover the framework of estimating parameters
from maximizing data likelihood in the upcoming weeks.

3 Conclusion

In conclusion, we looked at a different regime of unsupervised setting, where we have no
labels associated with the data points. We then saw k-means, a simple heuristic algorithm
that was easy to implement and fast for small &, but the algorithm inherently assumed all
clusters are spherical. Furthermore, we noted that k-means only made hard cluster assignments.
To facilitate soft assignments, we discussed the mixture of Gaussians clustering, where we
assumed that the data was generated from, well, a mixture of Gaussians, and the model aimed
at recovering the data generation parameters iteratively.

9/13

[CS 3780/5780] Lecture 5: Unsupervised learning

A Notation

D The training dataset of n samples

n The number of training samples in the dataset D

d The number of feature dimensions

k The number of clusters

V) € R? The d-dimensional (feature) vector associated with the j-th training sample

yl9) The class label associated with the j-th training sample (not present in unsu-
pervised setting case)

xéj JeR The ¢-th element of 27

Cl = The data point V) is assigned to cluster-i

p The center of the cluster-i or the mean of a set of points in cluster-:

o The standard deviation of the data points in cluster-i

1{a = b} Indicator function that outputs 1 when a = b, 0 otherwise

J The cost function (often referred to as the distortion function)

N(p,0) Normal distribution defined by mean, 1, and variance, o

P(alb; @) The probability of a given b, parameterized by «.. Note: « is a parameter of

the model rather than a random variable

X ~ Bernoulli(p)

X is a Bernoulli random variable with parameter p. Think: X indicates the
outcome of a coin toss, with P(H) = p

X ~ Multinomial(®)

X is a Multinomial random variable with parameter ¢ and n = 1—this is
the generalization of the Bernoulli random variable. Think: X indicates the
outcome of rolling a dice, with P(side-i) = p®; & = {pM), ... p©®}

Z A random variable to indicate the outcome of rolling a k-faced die (k = 2:
Bernoulli; Multinomial otherwise)

P(Z0) =74) The probability of drawing a data point from Gaussian-i. This is more of a
belief or prior, and is independent of the data. Think: God set this a priori

P(ZW) = i|z\0) The probability that point 2/ was to generated from Gaussian-i, given that
we observed 2U). Think of this as: we observed), now, was it drawn from
Gaussian-¢?

P(29|Z0) =4) The probability of observing /) given that we are generating data from
Z9) = i; in this lecture, we assume)| Z0) = i ~ N'(u®, o@)

S) A set of model parameters; in case of k = 2, © = {u), @ oM @ p}

B Probability fundamentals

Bayes rule (or, flip). For two events, A and B, we are often interested in the probability that
both these event happen. For example, consider A to be “Did LeBron make his first shot?”
and B to be “Did LeBron make his second shot?,” and we are interested in the probability that
LeBron makes his first shot and his second shot.

We are going to model this “and” clause as: in how many cases did LeBron make his first shot,
and in how many of those did LeBron make the second shot. Mathematically, of the cases
where A occurred, B would also occur in B|A of them. Hence, we have

P(A,B) = P(A)P(B|A) = P(B)P(A|B).

10/13

[CS 3780/5780] Lecture 5: Unsupervised learning

From the above, we observe that
P(BJA)P(A)
PB)
which is often referred to as the Bayes rule or the Bayes flip (since we flip the conditional from
A|B to B|A).

P(A|B) =

Marginal probability. Consider the simple case of two events, A: the point = was generated
from Gaussian-1 and B: we observe point z in our data. Now, we wish to compute P(B)—we
have two possibilities here: we observe = and it was generated from Gaussian-1, or we observe
x and it was generated from Gaussian-2. This follows,

P(B) = P(A,B) + P(A, B)
= P(B|A)P(A) + P(B|A")P(A"),

where A’ is the complement of A.
C Maximum likelihood estimates

In §2.4 (step (c)), we noted that the parameters, © = {p, u"), 1@ o1 3} were estimated
to maximize the likelihood of the data we observed. While we will make this more concrete in
the upcoming lectures, we preset a proof here for completeness.

We write down the likelihood of our data as:

and our goal is choose © such that L(©) is maximized. A simple observation here is that max-
imizing L(©) is the same as maximizing log(L(©)). This follows from log(x) being strictly
increasing, meaning that whenever x increases, so does log(x)—therefore, the value of = that
reaches the highest point will also correspond to the highest value of log(z) on the graph; essen-
tially, they both occur at the same point. Hence, we are going to maximize ¢(0) = log(L(O))
instead:

{(©) = log(L(0))
= log (ﬁ Pz, @))

= Z log P(zY); ©).
7=1
Now, we can estimate the marginal probability P(x") similar to our estimates in §53:

(©) =) log P(zV); 0)
j=1

= Zlog Z P(a:(j)\Z(j) =i @)P(Z(j) =1;0).
j=1 i€{1,2}

Now, if we were to set the derivates of the above equation to zero and try to solve for ©, we

would quickly notice that it isn’t possible to estimate the values of © in closed form.

11/13

[CS 3780/5780] Lecture 5: Unsupervised learning

Now, if we assume that we “know” the cluster assignments beforehand, the above reduces to:

(©) = log P(z1); ©)
j=1

= log(P(zW| 29 = i;0)P(ZY) = i;0)),
j=1

where we no longer need to optimize over all cluster assignments, k; we can use our knowledge
of assignments instead. Now, maximizing the above with respect to i, o, p gives you:

. 1 <& ‘
(O R—— 1{706) —
p 7Z;i1 { i}

Y 120 = i}al)
S H{Z0) =i}
S {20 = i} (@) —)2
Z?Zl 1{Z(j) =i}

Since we don’t have “hard” assignments, 1{Z\/) = i}, noting which Gaussian the point was
sampled from, we can replace them with our soft assignments, P(Z) = i|z()).

) =

o0 —

12/13

[CS 3780/5780] Lecture 5: Unsupervised learning

References

CS4/5780. Unsupervised Learning. URL
https://www.cs.cornell.edu/c
ourses/cs4780/2023sp/lecture
s/UnsupervisedLearning.html.
Accessed: 02/03/2025.

A. Miller, A. Wu, J. Regier, J. McAuliffe,
D. Lang, M. Prabhat, D. Schlegel, and R. P.
Adams. A Gaussian process model of quasar

(Last compiled: 3/10/2025, 2.24pm ET.)

spectral energy distributions. Advances in
Neural Information Processing Systems, 28,
2015.

A. Ng. CS229 Lecture notes. CS229 Lecture
notes, 1(1):145-151, 2000. URL https:
//cs229.stanford.edu/main_no
tes.pdf. Version: June 11, 2023.

13/13

https://www.cs.cornell.edu/courses/cs4780/2023sp/lectures /UnsupervisedLearning.html
https://www.cs.cornell.edu/courses/cs4780/2023sp/lectures /UnsupervisedLearning.html
https://www.cs.cornell.edu/courses/cs4780/2023sp/lectures /UnsupervisedLearning.html
https://cs229.stanford.edu/main_notes.pdf
https://cs229.stanford.edu/main_notes.pdf
https://cs229.stanford.edu/main_notes.pdf

	K-means clustering
	The clustering algorithm
	Properties of K-means
	On choosing the number of clusters

	Mixture of Gaussians
	Assumptions
	The mixture of Gaussians model
	Formalization
	The algorithm

	Conclusion
	Notation
	Probability fundamentals
	Maximum likelihood estimates

