NOTE: This is a draft for [CS 3780/5780] Lecture 11: Of balls and bowls. Do not distribute
without explicit permission from the instructors.

Lecture 11: Of balls and bowls CS 3780/5780, Sp25
Tushaar Gangavarapu (TG352@cornell.edu)

In the previous lecture we saw iterative methods to finding the optimal parameters for a given
cost function J(6), starting from a reasonably good initial guess, #(*). Formally, for a given
iteration G, with fixed point %, we constructed iterates 1), ...) where

oD — (™), G(H*) ="

One iteration that we built from intuition was to take “sufficiently small” steps (read: « values)
in the direction of the steepest descent, given by the direction opposite to that of the gradient,
until you reach the fixed point:

o) = G(OW) = 0® 4 o(=VJ(BW)).

If you recall, we showed that gradient descent offers linear convergence for a strictly convex!
quadratic landscape of the form J () = (1/2)67 A0 + b10 + c:

I = [I(T = ad)™],

where ¢ = 6~ — () 5o long as o < 2/Aax, Where Ay is the largest eigenvalue of A. In
our example quadratic with A = 2I,b = 0, ¢ = 0, which gives us J(0) = 070 = 0? + 02, we
noted that < 1 guarantees convergence.

This guarantee clearly imposes bounds on how large a step size you can take before diverging,
and that depends on \,... One could easily imagine scenarios where we are forced to set
a really small o to have any chance of convergence, which is not ideal. Additionally, the
cost function landscapes are not as simple as our single-minima convex objective: how do we
deal with more than one minima, or, what happens when the landscape is almost flat in one
direction but steep in the other? Finally, what are the practical (computational) considerations
when implementing gradient descent? Can we do better? In this lecture, we will see specific
improvements over vanilla gradient descent that allow for faster convergence, possibly jolting
out of local minima, and allowing for faster computation of gradients.

1 Momentum

Let’s start with our first concern: possibly slow convergence despite using an optimal «. Let us
revisit our error iteration for the general quadratic to see what the fastest possible convergence
rate is. We have ||e*+D || = ||(I—aA)e™®||, and we are looking for optimal & < 2/ pay. Recall
that the eigenvalues of I — oA control the amount of “stretch” it inflicts on £®) I A\pin and
Amax are the extreme eigenvalues of A, then for any setting of «, the maximum stretch caused
by I — A must be

max (|1 — aAmin|, |1 — @Amax])-

Note that above needs to be capped at 1 to ensure |[c*+D|| < |||, i.e., convergence. We
therefore obtain the following piecewise functional form for our worst-case convergence:

11— Of)‘min O <a< 2/()\min + Arnax)
O5/\max - 17 2/()\mln + /\max) S a < 2/>\max~

' A is symmetric and positive definite, meaning all eigenvalues are positive (see Lecture 10, §1.3: “Aside
on quadratic form” for reference). Advanced: Strict and strong convexity are not interchangeable; for example
exp(x) is strictly convex but not strongly convex

1/12

mailto:TG352@cornell.edu

[CS 3780/5780] Lecture 11: Of balls and bowls

Hence, setting @ = 2/(Amin + Amax) ensures neither |1 — aAy,,| nor |1 — a\y,.x| dominate,
which makes our worst-case convergence as fast as possible. How fast?

2)\min 2>\max Amax - >\min)\max/>\min -1
max _, _ frmax) o _ '
)\min +)\max)\min + Amax)\max +)\min)\max/Amin + 1
Now, if A is such that \,;;, = A\Lax, We converge in a single step. You can verify this (manually
or by running the demo?) by setting o = 0.5 and run gradient descent for J(0) = 67 + 63. We
are more interested in a non-idealistic setting, say, one where A\, > Api,—this would imply

a heartbreakingly slow convergence! We observe our bowl getting narrower and steeper as the
ratio, Amax/Amin Erows:

1—

Amax/Amin = max/Am Amax/Amin = 100

N 4(\ 7 |

w = wt
——
——

—

w = <

2 2 ro2
1 + ! | L
‘V&O &XO ' RXO
-3 -2 -2
-2 -1 0 1 9 2 -2 -1 0 1 9 2 -2 -1 0 1 9 2
(21 01 61

To bolster our previous point of slow convergence, let us run the gradient descent iteration when
Amax = 10 and \,;, = 1; we can construct such a J as:

1
J(0) = 6" FOO 0] o= (1oe2+02) VJ = [100 0] o— [1231]

Starting at (®) = (1, 1), we have the next step as
1 10 1 — 10«
(1) _ p0) _ — _ =
0 0 aVJ [1] a{l] {1_(%]
From our previous discussion, we realize that the optimal « is 2/(Apin + Amax) = 2/11, and

plugging in gives us) = (—9/11,9/11). It looks like we overshot the minimum! Let’s see
what this looks like for a few more iterations:

1.0 1
0.5 54 &3
48
a2 b
3.6 3
o _ 30 &
< 0.0 4 §
18)
1.2 ~
i 06 =
—0.5 00 =
710 T T T
-1.0 0.5 0.0 0.5 1.0

https://colab.research.google.com/drive/14G5hZpzHGOGr3wi_fE7hJanYsvSii
gFi.

2/12

https://colab.research.google.com/drive/14G5hZpzHGOGr3wi_fE7hJanYsvSiiqFi
https://colab.research.google.com/drive/14G5hZpzHGOGr3wi_fE7hJanYsvSiiqFi

[CS 3780/5780] Lecture 11: Of balls and bowls

1.1 ‘““Heavy” ball rolling downhill

The slow zig-zag path to convergence is a real problem with gradient descent that we need to im-
prove. The key observation we make here is that when an external force is applied, lightweight
ball will observe these zig-zag motions, i.e., jumping from one side of the bowl surface to the
other. However, assuming reasonable force, this would not happen for a heavier ball rolling
downhill, whose path is more stable.

What does this mean concretely >—if the previous gradient direction and the current direction
are the same, we increase our velocity (similar to how a heavy ball would gain momentum).
However, when the past and current gradients point in opposite directions, we dampen the
velocity:

v = gD v(eW)

~~~ ——" ———

velocity  dampened at perturbed by an
each step external force

If you’ve seen exponential smoothing before, the above is equation is exactly that; it’s simply
considering both the history of past updates and the present force into consideration before
deciding the ball trajectory. Pictorially,

In our velocity formulation, 5 < 1 is a hyperparameter, similar to «, the learning rate. Two
things to note: (1) when § = 0, we solely rely on the gradient vector to determine our velocity
at next step, and (2) the hyperparameter 3 repeatedly dampens the impact of past on the present,
i.e., the most recent past is weighted 3, while distant past, say k steps ago, is weighted only
by a factor of 5*.

Now, our iteration of gradient descent with momentum can be written as:
g+l — G(é’(k)) =% — qu®),

where « is the step size, as usual. Now, this may seem like some innocent cheap hack, a simple
trick, if you will, to get around gradient descent’s zig-zag behavior. Despite its simplicity,
momentum gives a quadratic speedup to many functions (Goh, 2017). Now, when universe
gives you quadratic speedups, you pay attention.

1.2 Convergence analysis

Let us analyze the (hopefully, improved) convergence of gradient descent with momentum.
Again, we will stick with our strictly convex quadratic, but an even simpler one (ignoring

3/12



[CS 3780/5780] Lecture 11: Of balls and bowls

vector b and scalar c):

J(0) = (1/2)6" A,
for some symmetric positive definite A € R?*?, The gradient can be computed as V.J () =
A6 .3 Now, our iteration is:*

PEHD) _ o) _ (8

— AQHHD (kD) — 3y,(k)

which can be written more compactly as

1 0] [o¢*+D 1 —al [6®
a3 ] = o 3 ]

Again, we go back to the notion that the amount of stretch by a matrix is completely determined
by the eigenvalues. To this end, let us track an eigenvector of A, say ¢, with the corresponding
eigenvalue )\, i.e., Ag = Aq. Further, let ®) = ¢®g and v® = d®) ¢ for some scalars c*)
and d*). This follows that A0 = AcFq = M) Ag = ¢*) \g; similarly Av®) = d*) \q. This
reduces our matrix form above to track the coefficients as:

1 0] [+ 1 —a] [¢®]
—X\ 1| [d*D] T o g [d® |-
Hence, we have

ck+1) 1 0][1 —al [¢® 1 —a ] [c® k)
v = bl o B ] = [3 5 20] L] =[]

—_——
=R

I

Observe that after & steps, the starting vector is multiplied by R*. For fast convergence to zero,
which is the minimum of our J(#), we need to choose a and (3 such that R is small. Once
again, we recall that the eigenvalues of a matrix determine its stretch, i.e., the eigenvalues of R
determine the convergence. Under the specific condition of

1< 1+8— e <1,
2V/B

we find that the magnitude of the eigenvalues of R is v/5.° In other words, the rate of conver-

gence of momentum, governed by R, is v/3. To emphasize, this convergence rate applies no

matter the step size, so long as the above setting of —1 < (1+ 8 — Aa)/(2v/B) < 1is satisfied
for all eigenvalues A of A.

This might not seem as magical at a first glance, but as a final step, let us estimate optimal [3;
since convergence depends on /3, we want (3 to be as small as possible. Since 0 < A\pin(A) <
A < Apax(A), the above condition holds iff

S 1 + ﬁ - >\rnax05 and 1 + 6 - )‘mina

2VB 2VB
The smallest value of 5 occurs when inequalities become equalities above, and if you solve for
« and [ (two equations and two unknowns), you get

o — 2+ 26 ) \/B oV /\max -V )\min Y )\max/)‘min -1
)\max + )\min’ V )\max + V )\min \V )\nlax/)\min + 1 .

3For those less familiar with matrix derivatives, The Matrix Cookbook serves as a good reference: https:
//www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf.

“We write the equation for v**+1) and not v(¥) | and rearrange the terms to have Sv(*) on the right.

3See Appendix B for complete proof.

-1 <1

4/12


https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

[CS 3780/5780] Lecture 11: Of balls and bowls

Remember, /13 is the convergence rate of momentum.

If you don’t yet see it, here’s the single-sentence takeaway: with momentum, the Ay.x/Amin
factor in the convergence rate of gradient descent is now replaced with \/Apax/Amin! For the
case of A\pax/Amin = 100, the convergence rate goes from 0.98 without momentum to 0.82
(remember: rates close to 1 mean no progress). Ten steps of ordinary gradient descent multiply
the starting error by (.82, which is matched by a single step with momentum.

1.3 Momentum at play
Now let’s run momentum iteration using our previous example with Ayax /Amin = 10:
1
J(0) = 5(109% +603).

For the same o« = 2/11 and 8 = (v/10 — 1)/(v/10 + 1), we can clearly see below that the
momentum helps reduce the “zig-zaggyness” in the updates (although there still exists some—
we will come back to this later):

. 1.0
Csé\l
+
%H
= 0.5 5.4 @
g 4.8
~—
= 12 T
B 36 5
N S i 30 &
= < 0.0 5 g
18
12
J 0.6 =
-0.5 oo
>
0.5
—~1.0 —-1.0 T T T
10  —05 00 05 0 —-1.0 —0.5 0.0 0.5 1.0

6

We can clearly see that momentum definitely helps speedup convergence. One final thing to
note (and can be easily visualized in the demo®) is that unlike gradient descent, which can
get stuck in local minima, descent with momentum can escape local minima (because the
accumulated moment could propel out of a local minimum).

Aside on practical implementations. Of course, the convergence rate and optimal hyperpa-
rameters in §1.2 require explicit knowledge of A, and Ap,.., which is often not known a priori.
A common practice is to set 5 as close to 1 as possible, i.e., rely on the past updates to ensure
smooth updates, and then tune o accordingly.

2 Adaptive learning rates

Look at the trajectory of our iterates from the momentum example in §1.3: it looks like our mo-
mentum iteration made progress initially but eventually slowed down. Recall that momentum
is dampened past velocity, previous updates, that is perturbed by a current external force, gra-
dient. If the gradient is zero in one or more directions, then momentum cannot help us in those
directions. To drive this point, let us look at the trajectories of gradient descent and momentum
for an extreme example:

®Demo materials adapted from: https://github.com/lilipads/gradient_descent_viz.

5/12


https://github.com/lilipads/gradient_descent_viz

[CS 3780/5780] Lecture 11: Of balls and bowls

2 ||| sehH e
20
15 14 24
~ 21
10 18
15
-5 < 0 12
L 0 9
6
3
2 =17 0
1
0 = GD
s 5 —>— GD-+momentum
_9 - I Ll : 1 :
9 1 0 1 5 -2 —1 0 1 2
01

01

Clearly, both gradient descent and momentum exhibit extremely slow (if any) convergence,
once they are only moving along 6, which is almost flat. The gradient vector for the function
everywhere except at the minima “dip” is

(k)

VIO = 10091(k)
0.016,

The gradient vector clearly indicates that our iterative methods favor moving along 6, direction

more than 6, since the gradient along 6, is significantly higher than that in #,. A simple idea to

counter this is: what if take different step sizes along different directions? We will make this

more concrete, but for now, let us motivate this problem with a less cherrypicked example.

In previous lectures and projects, we motivated the task of email spam classification using
textual features. One way of representing email data as features is to preset a dictionary of
words and populating features as indicating the count of a specific word in the dictionary (e.g.,
the word “machine” appearing in an email 12 times). It is easy to realize that the feature values
for commonly-occurring words is going to be high within a training sample and across the
training set. As a consequence, gradient descent and momentum tend to optimize for these
commonly-occurring words and make little to no progress along the rarer directions.

2.1 AdaGrad

We will ignore momentum for the remainder of this section and show improvements over gra-
dient descent. That said, modern optimizers enable both momentum and adaptive step sizes to
facilitate fast convergence; we will say more on this later.

Revisiting what we noted earlier, one idea is to use different step sizes along different directions.
Specifically, the more we have updated a certain feature, the less it will be updated in the future,
allowing for other features to catch up. In our extreme example, as we proceed through our
iteration, we want to update 6, more and 6, less. Formally, we can track this notion of notion
of how much a parameter gets updated using the gradient value:

(k) _ (k—1) ()\[:11\2
9 = 9i + (VJ(0™)[i])” .
—— N—————
how much 6; was updated ~ how much 6; is being
in the past updated now

In our previous extreme example with with V.J(0©)[1] = 1006\”, making ¢! = (1006!”)2,
while g(l) 0 .Ol@é )2. Now all we need to do is adapt the step sizes based of g

@,\II

)s, 1.e., the

6/12



[CS 3780/5780] Lecture 11: Of balls and bowls

1-th parameter is updated as:

ot — g _ L ye®),

g +e

where € is some small constant in the order of O(10~®), used to avoid division by zero. One
thing worth clarifying here is that when we say “how much 6; was updated,” we mean V .J|i|
and not o'V J[i|—this is equivalent to saying that if you’ve taken a larger step on a flat surface
and are still on the flat surface, you take another large step.

2.2 AdaGrad in action

Let’s see if AdaGrad helps us with movement along 6, direction in our extreme example:

2 ||| >ehiHter
14 24
21
18
15 =
IS 0 A 12 =
g >
/\\ .
1 3
- —— GD 0
—>— GD+momentum
|| =< AdaGrad
—2 Il [ | 1 |

-2 -1 0 1 2
61

Clearly, we have made progress in the “flatter” direction as well as the other one. That said, it
is clear the rate of converge has significantly slowed. A common solution to this—which also
allows us to effectively navigate non-convex landscapes where using the entire history of both
plateus and valleys might be detrimental—is to use a decay factor:

g* = g™ 4+ (1= p)(VI(OP)]i])?,

where p is some decay factor. This modification is often referred to as the RMSProp (root mean
square propagation). With a decay factor of 0.9, we observe significantly faster convergence:

2 llI] sebl o > ;882(
1A D 24
21
18
15
&N‘ < 07 12
\Y 9 =
\ \\\ NS /_'1
NN \ 6
N [ e 3
\§%§ ~ 7 ]| 2« GD+momentum 0
N —»— AdaGrad
| RMSProp
_9 -2 I L : 1 :
_9 -1 0 1 2 -2 -1 0 1 2
0 b1

7/12



[CS 3780/5780] Lecture 11: Of balls and bowls

3 Stochastic gradient descent

Let us switch focus to understanding the computational complexity of implementing gradient
descent approaches for (large) machine learning models. As motivating thought, let us compute
the cost-per-iteration of running gradient descent. For a given training dataset, D = {z(/)|1 <
J < n}, recall that the overall cost function to minimize is of the form

J(0) = 4=V, y;0),
j=1

for some loss function, ¢. Now, the gradient of J(f) can be computed as a simple sum of
constituent ¢(2), 3y9); #) functions. Simply put,

VI0) =) V(D yY):0).
j=1

Now for d-dimensional zU)s, we need to compute partials for every dimension, which takes
O(d), and we need to do this for all data points, bringing the overall complexity of computing
the gradient to O(nd). If we run gradient descent for a total of 7" iterations, the overall com-
putational complexity becomes O(nd1"). We observe that gradient descent needs to do O(nd)
work before making a single update to the parameters. This is especially problematic because
the larger the dataset, the slower the optimization is! Can we do better?

A rather basic idea is to randomly sample a mini-batch of training samples at a given optimiza-
tion step, and use that to approximate J(f) in that step; choose a different mini-batch in the
next step, and continue till convergence. In the simplest setting, we can set mini-batch size to
be one, i.e., we randomly select one training sample, say j, and use ¢ (), y19): ) as our noisy
estimator for J(6). Our iteration can be written as:

ot = g _ o= J(p%))
J
S JOEY = p(@) 4. gk)
Vi J(0W) = (x4 0').
(For obvious reasons,) we call the above “stochastic” gradient descent. Note that the cost-per-
iteration is only O(d), though the number of iterations might be larger than that for gradient

descent. An example comparing gradient descent and stochastic gradient descent trajectories is

shown to the right. 0

While the convergence proof is out of the scope 30 4 : Sgo
for this class, we want to remark a few properties "
related to convergence of stochastic gradient de- 27000
scent. A typical feature of using such a noisy es- 07 21000
timator is that it can jump out of a local minima, < o- s
which is easy to realize. A more intriguing prop- | 2000
erty is that stochastic gradient descent offers what 0
is often known as a “semi-convergence™: fast con- |
vergence to the optimal parameters at start (faster 301
than gradient descent), while the later iterations, _, , , ,

—40 —20 0 20 40

especially closer to the optima are more erratic.
A common strategy here is to have adaptive step
sizes, which would affect the convergence rate, or resort to early stopping.

0,

As a final note, all the variants discussed above for gradient descent can be applied to stochastic

8/12



[CS 3780/5780] Lecture 11: Of balls and bowls

gradient descent as well.

4 Conclusion

To recap, in this lecture, we saw several improvements over vanilla gradient descent. First, we
noted that vanilla gradient descent can converge rather poorly when Ap,.x /Amin is really large,
implying narrow, steep bowls. To counter this, we saw heavy-ball momentum, where we gained
momentum when the past and current gradients aligned and slowed down otherwise. Conse-
quently, we showed how this seemingly innocent change allowed us to go from running one
momentum step for every ten steps of gradient descent (when A,y /Amin = 100). Next, we re-
alized how movement along flatter surfaces is quite ineffective when just using gradients. Here,
we devised a simple scheme of adaptive learning rates by decreasing step sizes proportional to
the curvature of the objective function, AdaGrad, and its faster variant, RMSProp.

Finally, we looked at computational considerations of implementing gradient descent, and pre-
sented a noisier estimator which allowed for lower cost-per-iteration.

Adam optimizer. It would be remiss not to mention Adam (Kingma and Ba, 2014, adaptive mo-
ment estimation; with over 206, 930 citations and counting), the optimizer that dominates large
language model training. Adam combines the best of both worlds: momentum and RMSProp.
While we do not cover Adam in these lecture notes, its underlying principles are well-studied
here, and we leave it as a topic for further reading.

9/12



[CS 3780/5780] Lecture 11: Of balls and bowls

A Notation

D The training dataset of n samples

n The number of training samples in the dataset D

d The number of parameters we wish to estimate. Note that we also use d to
represent the number of features; these need not be the same, as we will see
later in the course

z0) ¢ R? The d-dimensional feature vector associated with the j-th training sample

y) The class label associated with the j-th training sample

29 e R The ¢-th element of 27

6 € R? A vector of d model parameters

0, € R The ¢-th element of 6

J(0) The cost function we are trying to optimize (here, minimize)

0(29), ;) | The loss evaluated by running a model parameterized by # on ) and com-
paring it to the true label, 3/

6% ¢ R4 The k-th iterate of model parameters

0* € RY The optimal model parameters that minimize .J (6)

G The iteration that updates the parameters based on their current values. At the
optima, 6*, we require G(0*) = 6*

VJ(H*)) € R? | A vector of partial derivatives of J(6), evaluated at #*), known as the gradi-
ent vector (read: “nabla J” or “del J”). Advanced: If you’re familiar with
Jacobian, gradient is the dual of Jacobian for scalar-valued functions.

o The learning rate or step size used to move along the steepest descent direction
in gradient descent

gk Error at step k, computed as §* — §(*)

[l The (two) norm of a vector u

Aj The j-th eigenvalue of a matrix

Amin The smallest eigenvalue of a matrix

Amax The largest eigenvalue of a matrix

B Computing eigenvalues of iteration matrix

Let v be an eigenvalue of I?; we can obtain the eigenvalues by solving the characteristic poly-
nomial, det(vI — R) = 0. Hence, we have
-«
v— [+ A\

i mzsa 7)) o 13
=¥ -1 —-F+X) + A

=12 —Br4dav—v+ B —da+
=12~ (14+B8-da)r+B20.
So, from the quadratic formula, the eigenvalues of R are

(1+8—Xa) £ /(1+8—Aa)?—4p
5 :

10/12



[CS 3780/5780] Lecture 11: Of balls and bowls

Next, we will operate under a specific condition of the discriminant (the term within the square
root) is negative. That is,

1—|—5—)\a<
2V

When the discriminant is negative, the roots of the quadratic are complex conjugates, say, v
and v, with |v| = |7].

(14+B8—-Xa)*—48<0,0or —1< 1.

One final thing we recall is that the determinant of a matrix is the product of its eigenvalues.
For R, we have

det(R) =8 — da+ da = (.
Since det(R) is the product of eigenvalues of R, v and 7, we have § = v = |v|* , which gives
us |v| = +/B. Hence, under the specific condition of
1+ 08— A
2VB

we have that the magnitude of eigenvalues of R to be /3.

-1 < < 1,

11/12



[CS 3780/5780] Lecture 11: Of balls and bowls

References

G. Goh. Why momentum really works. Dis-
till, 2017. doi: 10.23915/distill.00006. URL
http://distill.pub/2017/momen
tum.

D. P. Kingma and J. Ba. Adam: A method
for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014. URL https://
arxiv.org/abs/1412.6980.

G. Strang et al. Linear algebra and learning
from data, volume 4. Wellesley-Cambridge

(Last compiled: 2/27/2025, 12.51 Noon ET.)

Press Cambridge, 2019. Read Part VI.4:
“Gradient Descent Toward the Minimum”
(pp. 348-353).

R. Zadeh. Lecture 11: Distributed Algo-
rithms and Optimization. CME 323 lecture
notes, Spring 2015, 1(1):1-5, 2015. URL
https://stanford.edu/~rezab/c
lasses/cme323/S15/notes/lecll.
pdf. Scribed by K. Bergen, K. Chavez, A.
Ioannidis, and S. Schmit.

12/12


http://distill.pub/2017/momentum
http://distill.pub/2017/momentum
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://stanford.edu/~rezab/classes/cme323/S15/notes/lec11.pdf
https://stanford.edu/~rezab/classes/cme323/S15/notes/lec11.pdf
https://stanford.edu/~rezab/classes/cme323/S15/notes/lec11.pdf

	Momentum
	``Heavy'' ball rolling downhill
	Convergence analysis
	Momentum at play

	Adaptive learning rates
	AdaGrad
	AdaGrad in action

	Stochastic gradient descent
	Conclusion
	Notation
	Computing eigenvalues of iteration matrix

