
NOTE: This is a draft for [CS 3780/5780] Lecture 10: Gradient-based optimization. Do not
distribute without explicit permission from the instructors.

Lecture 10: Gradient-based optimization CS 3780/5780, Sp25
Tushaar Gangavarapu (TG352@cornell.edu)

So far in this course, we have seen several algorithms for supervised and unsupervised learn-
ing. For most of these algorithms, we wrote down an optimization objective—either as a cost
function (in k-means, mixture of Gaussians, principal component analysis) or log-likelihood
function, parameterized by some parameters. In essence, we hoped to find the optimal parame-
ters by minimizing (or maximizing) the objective. For notational convenience, we will denote
the optimization objective as J(θ), parametrized by θ.

For most of these algorithms, we found closed-form solutions—set the derivative of J(θ) to
zero and solve for θ—to our objective. In the previous lecture, we saw logistic regression,
where the objective (to minimize) was:

J(θ) =
n∑

j=1

log(1 + exp(−y(j)θTx(j))),

where x(j) ∈ Rd is the j-th training sample with y(j) ∈ {+1,−1} as the associated label, and n
is the total number of training samples. Now, if you try to solve for θ by taking the derivative
with respect to θ and set it to zero, you will quickly realize that it is not possible to estimate θ in
closed form from above; see Appendix B for proof. Even in cases where an analytical solution
is derivable, it can be computationally expensive to compute the exact solution.1

In this lecture, we will focus on iterative approaches to finding the optimal θ. The ideas dis-
cussed here will apply broadly and are not limited to a specific algorithm. Our goal is to choose
θ to minimize J(θ), and we want to do it iteratively.2 Let us formalize this: we wish to construct
a sequence of iterates, θ(1), . . . , θ(k), starting with a good initial guess θ(0) ∈ Rd such that,

θ(k+1) = G(θ(k)),

where G is our iteration. Observe that, upon convergence to optimal θ⋆, we require G(θ⋆) = θ⋆;
in other words, θ⋆ is the fixed point of iteration G. This rather simple formulation is quite
powerful in convergence analysis of G, as we will see later.

Significance. Gradient descent and its variants have been fundamental in powering modern
large language models with complex, non-convex landscapes. Beyond computational effi-
ciency, gradient descent has been shown to have implicit regularization effects—see Landweber
iteration3 and double descent phenomenon (Belkin et al., 2019) for specifics. We will uncover
the core ideas in double descent phenomenon when we discuss bias-variance tradeoff.

1 Gradient descent

So we wish to form our sequence of iterates, θ(1), . . . , θ(k), starting from a good initial guess
θ(0).4 As an example, let us consider a simple J(θ) as follows:

J(θ) = θ21 + θ22,

1We will see an example of this when we discuss linear regression.
2We will only deal with scalar-valued functions, i.e., J : Rd → R; vector-valued functions, i.e., J : Rd →

Rm, are out of scope for this lecture. See §4.2 of Gangavarapu (2023) for further reading.
3https://www.cs.cornell.edu/courses/cs6241/2023fa/lec/2023-08-31.pdf.
4We will discuss the impact of choice of θ(0) and convergence of G later, and if it even matters to finding the

optimal θ⋆ later; for now, we will assume a reasonably good initial guess.
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[CS 3780/5780] Lecture 10: Gradient-based optimization

where θ ∈ R2; we use subscripts to indicate dimension indices. The landscape of J(θ) is as
follows; 3D plot to the left and contour plot, a.k.a., top view, to the right:
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Observe that θ⋆ =
[
0
0

]
is the minimizer of J(θ), and J(θ⋆) = 0.

Now, the goal is to come up with an iteration, G, such that we can iteratively converge to θ⋆,
starting from θ(0). Recall that we wish to construct G such that θ⋆ is a fixed point G.

1.1 Gradient and ascent direction

Let us briefly recall what (partial) derivatives tell us: they indicate the behavior of a function in
an infinitesimally-small region around a given point. Simply put, for some function of x, f(x),
we have

df

dx

∣∣∣∣
x=x(0)

= f ′(x(0)) =
f(x(0) + h)− f(x(0))

h
,

for some small h in the order of O(10−5), which tells us the behavior of f around x(0). This
is often referred to as the first order approximation of the derivative, and incurs an error in the
order of O(h).5

Given this notion, we are now interested in interpreting what a derivative tells us. Consider
our previous example of J(θ1, θ2) = θ21 + θ22 and we’ll look at the behavior of this function at
(θ

(0)
1 , θ

(0)
2 ) = (0, 2):

∂J

∂θ1

∣∣∣∣
(θ1,θ2)=(0,2)

= 2θ
(0)
1 = 0;

∂f

∂θ2

∣∣∣∣
(θ1,θ2)=(0,2)

= 2θ
(0)
2 = 4;

Recall from our definition of derivative, we have:

f(θ
(0)
1 + h) = f(θ

(0)
1 ) +

∂f

∂θ1
h = f(θ

(0)
1 ),

which indicates that small perturbations to θ1 (at θ1 = 0) doesn’t change the value of J. Simi-
larly, we have:

f(θ
(0)
2 + h) = f(θ

(0)
2 ) +

∂f

∂θ2
h = f(θ

(0)
2 ) + 4h,

5For the purposes of this lecture, we only use this difference-based definition of a derivative (also referred
to as numerical differentiation) for intuition. In practice, numerical differentiation is ofter performed using a
symmetric and centered difference, which is a second-order approximation. See Appendix C for details.

2/13



[CS 3780/5780] Lecture 10: Gradient-based optimization

meaning: (small) perturbations to θ2 (at θ2 = 2) are amplified 4× in J. Hence, derivative is an
indicator of how sensitive the function, J, is to the changes in the input, θ1, θ2.

The key observation here is that this sensitivity measure acts a dial which we can use to navigate
the J landscape. In the above example, starting from (θ1, θ2) = (0, 2) and moving along the
direction: 

∂J

∂θ1

∂J

∂θ2

 =

[
0
4

]
,

results in the greatest increase in J :
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For convenience, we will collect partial derivatives of J with respect all θis into a vector,
∇J(θ(k)), read “nabla J” or “del J”:

∇J(θ(k)) =



∂J

∂θ1

∣∣∣∣
θ=θ(k)

...

∂J

∂θd

∣∣∣∣
θ=θ(k)

 ,

which we call the gradient vector. Notice that gradient indicates the steepest uphill direction:
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One final thing to note: observe J at θ⋆ (here, (θ1, θ2) = (0, 0)); it is “flat” in all directions, i.e.,
there is no one steepest ascent direction. Mathematically, this means that the partial derivatives,
which form ∇J, are all zero at θ⋆. Hence, we have ∇J(θ⋆) = 0.

1.2 Gradient descent iteration

Given that gradient indicates the steepest ascent direction, it follows that moving in the opposite
direction should give us the steepest descent direction, eventually bringing us to θ⋆. We now
write down the gradient descent or steepest descent iteration as:

θ(k+1) = G(θ(k)) = θ(k) + α (−∇J(θ(k)))︸ ︷︷ ︸
steepest descent

direction

,

where learning rate, α, is a hyperparameter that controls how big a step to take in the steepest
descent direction. Recall that for θ(k) = θ⋆, we have

θ(⋆+1) = G(θ⋆) = θ⋆ + α(−∇J(θ⋆)︸ ︷︷ ︸
=0

) = θ⋆.

Hence, we observe convergence upon reaching θ(k) = θ⋆, the optimal values of the model
parameters. It is often the case that we run gradient descent for a fixed number of iterations or
until a suffiently small gradient is observed (since gradient at θ⋆ is zero).

It is important to explicitly note here that we made an implicit assumption of a “nice” convex
J, i.e., specifically that J is differentiable at least once and the first derivative is continuous.6

We can now run the gradient descent iteration on our previous example with different configu-
rations of α and starting point, θ(0):
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Iteration (k)
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‖∇
J

(θ
(k

)
)‖

α = 0.20, θ(0) = (0.0, 1.9)

α = 0.04, θ(0) = (−1.8, 1.5)

α = 0.90, θ(0) = (−1.9,−1.8)

It is easy to see from above that α controls the rate of convergence. It is also quite clear that a
relatively small α implies slow convergence (e.g., α = 0.04 above). Be warned: it is inaccurate
to conclude that a large α gives us faster convergence; see α = 0.9 setting above, where the
values of θ bounce between two walls of the bowl. Now, a natural question is to ask if there are
settings for α, where we do not converge.7

6This is often denoted as C 1-continuous, or more generally, C k-continuous, to indicate that that the function
is differentiable k times and the k-th derivative is continuous.

7Interactive demo for J(θ) = θ21 + θ22: https://colab.research.google.com/drive/14G5hZ
pzHGOGr3wi_fE7hJanYsvSiiqFi.
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1.3 On the convergence of gradient descent

While the proof of convergence of gradient descent is out of the scope of this class, we wish to
show, or at the very least, analyze the convergence for J(θ) = θ21 + θ22 = θT θ. Let’s take this a
step further and show convergence for a general quadratic of the form:

J(θ) =
1

2
θTAθ + bT θ + c,

for some symmetric positive definite A ∈ Rd×d, b ∈ Rd, and c ∈ R.8 We have ∇J as

∇J =
1

2
(A+ AT )θ + b = Aθ + b;

here, we used the fact that A = AT for a symmetric A.9 Now, we have:

θ(k+1) = θ(k) − α(Aθ(k) + b)

− θ⋆+1 = θ⋆ = θ⋆ − α(Aθ⋆ + b)

θ(k+1) − θ⋆ = (θ(k) − θ⋆)− α(A(θ(k) − θ⋆))

= (I− αA)(θ(k) − θ⋆).

Now, what the above tells us is that error at step k+ 1, ε(k+1) = θ(k) − θ⋆ grows or decays by a
factor of I− αA, compared to the error at step k, ε(k) = θ(k) − θ⋆. We can expect convergence
if,

∥ε(k+1)∥ < ∥ε(k)∥, OR equivalently, ∥(I− αA)ε(k)∥ < ∥ε(k)∥.
Clearly, we can see that the maximum “stretch” of the transformation I − αA determines the
rate at which ε(k) contracts. Recall that the maximum stretch is governed by the (magnitude of
the) largest eigenvalue of I − αA (also known as the spectral radius). Hence, for convergence,
we require

max
j

|1− αλj| < 1,

where λj is an eigenvalue of A. Expanding this, we have:

−1 < 1− αλj < 1, or, 0 < α < 2/λj,

for all λjs. If we arrange all eigenvalues by magnitude from λmin, . . . , λmax, we get bounds
for α as 2/λmin, . . . , 2/λmax. Now, observe that is 2/λmax is the largest possible α value that
satisfies α < 2/λj for all j. Hence, for convergence we require α < 2/λmax.

In our example of J(θ) = θ21 + θ22 = θT (A/2)θ, where A = 2I (all eigenvalues are 2), we
require α < 1 for convergence. You can verify this to be true by running the demo script
above7 with α > 1.

Aside on the quadratic form. Recall that A is a positive definite matrix iff xTAx = ⟨x,Ax⟩ >
0 for all x ̸= 0, i.e., both x and Ax (a transformation on x) point in the same direction for all x.

From Taylor’s theorem around θ⋆, we have:

J(θ⋆ + h) = J(θ⋆) +∇J(θ⋆)Th+
1

2
hT∇2J(θ⋆)h+O(h3).

8For an asymmetric A, we can write A = (A+AT )/2+(A−AT )/2. It is easy to show that ⟨x, (A−AT )x⟩ = 0
for all x. Thus, for every asymmetric A, we have B = (A + AT )/2, such that ⟨x,Ax⟩ = ⟨x,Bx⟩. Hence, we
assume a symmetric matrix A; if not, we can convert it to an equivalent quadratic form with a symmetric matrix.

9For those less familiar with matrix derivatives, The Matrix Cookbook serves as a good reference: https:
//www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf.
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Now, since θ⋆ is a point of local optima, the gradient is zero (recall: no ascent direction; the
function is flat everywhere), i.e, ∇J(θ⋆) = 0. Hence we have:

J(θ⋆ + h)− J(θ⋆) ≈ 1

2
hT∇2J(θ⋆)h.

Realize from the general quadratic form above that ∇2J(θ⋆) = A for a symmetric A. Hence
we have J(θ⋆+h)−J(θ⋆) > 0 or J(θ⋆+h) > J(θ⋆) for any h, which implies that J is strictly
convex.

1.4 “Good” initial guess

One question remains unanswered: what is a reasonably good initial guess θ(0)?

The above convergence analysis marks that for a sufficiently small α, gradient descent con-
verges. This guarantee holds for any initial guess, so long as there is a unique global minimum.
As a motivating example, consider the following landscape for J(θ):
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Observe that two nearby starting points (marked in magenta and blue respectively on the figure
to the right) lead to different minima. Note that both these minima are fixed points of our
gradient descent iteration, i.e., ∇J = 0 at both these minima.

A common strategy that is often used with rather simple cost functions is to run gradient de-
scent multiple times from different starting points and choosing the the minimizer from the
configurations. This can get really expensive in modern machine learning models where we
need to estimate billions of parameters (for an estimate: Llama-3.1 has 405B parameters). In
the next lecture, we will explore a slightly different approach, where we (hopefully) jolt out of
local minima by leveraging a noisy gradient estimate.

2 Newton’s method

In the previous section, we saw how moving along the steepest descent direction to eventually
reach the fixed point, θ⋆, where ∇J(θ⋆) = 0. Hence, finding an iteration that iteratively con-
verges to θ⋆ can be reformulated as finding the solution, θ⋆ to ∇J = 0 iteratively. Now, this
reformulation should seem natural to you—after all, this is exactly how we find the optimal
value; take the derivative, set it to zero, and solve for θ⋆. All that we seek is to come up with an
iterative approach to doing this.
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2.1 Newton’s method for root finding

We will come back to the exact problem later, but the essence of it is to find the roots of a func-
tion, f(θ) iteratively. Let’s assume a simple 1D function for the moment; we will generalize
this later. Using Taylor’s theorem around θ(k), we can write

f(θ) = f(θ(k)) + f ′(θ(k))(θ − θ(k)) +O((θ − θ(k))2).

Now, let’s use the above to evaluate f at θ(k+1):

f(θ(k+1)) = f(θ(k)) + f ′(θ(k))(θ(k+1) − θ(k)) +O((θ(k+1) − θ(k))2).

Observe that if θ(k+1) and θ(k) are close enough, we can ignore the squared term above: it will
be relatively small. Next, if θ(k+1) is a root of f, we have f(θ(k+1)) = 0. Hence, the above
reduces as follows:

f(θ(k+1)) ≈ f(θ(k)) + f ′(θ(k))(θ(k+1) − θ(k))
set
= 0. (1)

Rearranging the above gives us:

θ(k+1) = θ(k) − f(θ(k))

f ′(θ(k))
.

One might ask: does the above mean that we are going to find the root in a single step? No,
realize that the above formulation is modeled based on the “local” behavior near θ(k), modeling
using our first-order approximation—we discarded the O((θ(k+1)−θ(k))2) term. Okay, a natural
follow up is to ask how far away is θ(k+1) from θ⋆, if θ⋆ is the root of f, i.e., f(θ⋆) = 0. Again,
from Taylor’s theorem, we have

0 = f(θ⋆) = f(θ(k)) + f ′(θ(k))(θ⋆ − θ(k)) +O((θ⋆ − θ(k))2). (2)

If we subtract the Taylor expansion of f(θ(k+1)) from f(θ⋆), i.e., (2) − (1), we get:

0 = f ′(θ(k)) (θ⋆ − θ(k+1))︸ ︷︷ ︸
=ε(k+1)

+O((θ⋆ − θ(k)︸ ︷︷ ︸
=ε(k)

)2).

Now, the above tells us that error at step k + 1, ε(k+1) = θ⋆ − θ(k+1) decays quadratically:

ε(k+1) = −O(ε(k)
2
)

f ′(θ(k))
= Cε(k)

2
,

assuming some modest constant, C. This implies that, a relative small error at step k leads to a
really small error at step k+1. Such behavior, where the errors is squared at each step is known
as quadratic convergence.

Hence, Newton’s method gives us a series of iterates, θ(1), . . . , θ(k), starting from θ(0), with
quadratic convergence properties. Let us see what this looks like:
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We interpret the above as follows: fit a tangent (first-order approximation) to the given function
at the current guess for θ, find its zero, and use it as the next guess for θ. We draw attention to
the fact that the Newton’s method has converged in just three steps!

2.2 From root finding to optimization

Recall that our optimization goal is to iteratively find roots of ∇J, or f ′ in 1D. We can use the
Newton root-finding approach discussed above, with the function being f ′(θ). Hence, we have:

θ(k+1) = θ(k) − f ′(θ(k))

f ′′(θ(k))
,

which is the Newton’s iteration for optimization. The above iteration gives us a sequence of
iterates that eventually find θ⋆ such that f ′(θ⋆) = 0. Realize that the convergence in best case
scenario (a modest constant, C) for Newton’s iteration is quadratic, as opposed to linear for
gradient descent at best.

Lastly, in our case of a scalar-valued J and vector-valued θ, we can generalize Newton’s itera-
tion as:

θ(k+1) = θ(k) −HJ(θ
(k))−1∇J(θ(k)),

where ∇J(θ(k)) is our vector of partial derivatives, evaluated at θ(k) and HJ(θ
(k)) is an d × d

matrix that collects the second-order derivatives. For θ ∈ R2, we have

HJ(θ
(k)) =


∂2J

∂θ21

∣∣∣∣
θ=θ(k)

∂2J

∂θ1∂θ2

∣∣∣∣
θ=θ(k)

∂2J

∂θ2∂θ1

∣∣∣∣
θ=θ(k)

∂2J

∂θ22

∣∣∣∣
θ=θ(k)

 .

In general, HJ is called the “Hessian” of function J and the (i, j)-th entry of HJ is given by:

(HJ)i,j =
∂

∂θi

[
∂J

∂θj

]
=

∂2J

∂θi∂θj
.

We can now run Newton’s iteration on our previous example of J(θ) = θ21 + θ22 and contrast it
with gradient descent:

θ?
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Depending on how you look at it, it’s either a “huh?” or an “aha!” moment—the Newton
iteration converged in a single iteration! We can choose any starting point and Newton is
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guaranteed to converge in a single iteration for J(θ) = θ21 + θ22. For this J, we have

∇J(θ(0)) =

[
2θ

(0)
1

2θ
(0)
2

]
= 2θ(0); HJ(θ

(0))−1 =

[
2 0
0 2

]−1

=

[
1/2 0
0 1/2

]
,

which gives

θ(1) = θ(0) −H−1
J ∇J = θ(0) −

[
1/2 0
0 1/2

]
(2θ(0)) = θ(0) − θ(0) = 0.

Hence, for our J, the Newton’s method jumps directly to the minimum in one iteration.

One final thing to note: similar to gradient descent, we implicitly assumed a “nice” convex J,
i.e., J is differentiable at least twice and the second derivative is continuous.

2.3 Always run Newton?
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θ?

There are several reasons for not wanting to run
Newton iteration to find the optimum. An obvi-
ous one is when Hessian is not well-behaved, i.e.,
what if we can’t invert the Hessian? Or, if Hessian
is near-singular, the inversion becomes unstable.
Additionally, at saddle points, Newton’s iteration
may move away from the optimum than towards
it. Sometimes, the iteration can simply oscillate
between two points; an example of this behavior
in root finding is shown to the right.

Finally, one iteration of Newton is more expensive
than one iteration of gradient descent, since it re-
quires computing and inverting an d × d Hessian.
So long as d is not significantly large, Newton usu-
ally enjoys faster convergence.

3 Conclusion

In this lecture, we motivated the need for iterative
methods to finding parameters that minimize a given cost function. We then saw how gradient
models the steepest ascent direction, and realized that taking “sufficiently small” steps in the
steepest descent direction eventually leads us to a minimum (not necessarily the global mini-
mum). Furthermore, we analyzed the convergence properties of gradient descent for a general
quadratic and noted linear convergence for “nice” J.

Next, we realized how our minimization problem could be reformulated as one of root finding,
following which, we saw the Newton’s method for optimization. We then contrasted Newton
with gradient descent to note the quadratic convergence rate of Newton for nice functions.
Finally, we looked at why one might not want to run Newton optimization. Of course, it is also
possible to devise an iteration in between gradient descent and Newton, and such approaches
are often termed as “scaled” gradient descent iterations.

In the next lecture, we will explore the limitations of gradient descent and develop strategies to
overcome them.
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A Notation

d The number of parameters we wish to estimate. Note that we also use d to
represent the number of features; these need not be the same, as we will see
later in the course

x(j) ∈ Rd The d-dimensional feature vector associated with the j-th training sample
y(j) The class label associated with the j-th training sample
x
(j)
ℓ ∈ R The ℓ-th element of x(j)

θ ∈ Rd A vector of d model parameters
θℓ ∈ R The ℓ-th element of θ
J(θ) The cost function we are trying to optimize (here, minimize)
θ(k) ∈ Rd The k-th iterate of model parameters
θ⋆ ∈ Rd The optimal model parameters that minimize J(θ)

G The iteration that updates the parameters based on their current values. At the
optima, θ⋆, we require G(θ⋆) = θ⋆

f ′(θ(k)) = df(θ(k))/ dθ The derivative of f(θ) with respect to θ, evaluated at θ(k). Upright d is differ-
ent from the dimension d

∂f(θ(k))/∂θi The partial derivative of f(θi, . . . ) with respect to θi, evaluated at θ(k)

h ∼ O(10−5) An infinitesimally-small perturbation around a given point, often used in the
definition of the derivative

∇J(θ(k)) ∈ Rd A vector of partial derivatives of J(θ), evaluated at θ(k), known as the gradi-
ent vector (read: “nabla J” or “del J”). Advanced: If you’re familiar with
Jacobian, gradient is the dual of Jacobian for scalar-valued functions.

α The learning rate or step size used to move along the steepest descent direction
in gradient descent

ε(k) Error at step k, computed as θ⋆ − θ(k)

∥u∥ The (two) norm of a vector u
λj The j-th eigenvalue of a matrix
λmin The smallest eigenvalue of a matrix
λmax The largest eigenvalue of a matrix
Taylor exp. f(θ) For a 1D function, f, f(θ) = f(θ(k)) + f ′(θ(k))(θ − θ(k)) +O((θ − θ(k))2)

f ′′(θ(k)) = d2f(θ(k))/ dθ2 The second derivative of f(θ) with respect to θ, evaluated at θ(k).
∂2f(θ(k))/∂θi∂θj The (second order) partial derivative of f(θi, θj, . . . ) with respect to θi and θj,

evaluated at θ(k)

HJ(θ
(k)) = ∇2J(θ(k)) ∈ Rd×d The matrix of second order partial derivatives of J(θ), evaluated at θ = θ(k),

with the (i, j)-th entry being the partial with respect to θi and θj. This is often
called the Hessian

B Optimizing logistic cost function in closed form

Given the logistic cost function,

J(θ) =
n∑

j=1

log(1 + exp(−y(j)θTx(j))),

we want to show that obtaining a closed-form solution for θ is unfeasible. We follow the
standard procedure of taking the derivative with respect to θ and setting it to zero, to solve for
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optimal θ:

∇θJ(θ) =
n∑

j=1

∂

∂θ
log(1 + exp(−y(j)θTx(j)))

=
n∑

j=1

−y(j)x(j) exp(−y(j)θTx(j))

1 + exp(−y(j)θTx(j))

=
n∑

j=1

−y(j)x(j)

exp(y(j)θTx(j)) + 1
set
= 0.

One can clearly see that the complexity introduced by the nonlinear exponential terms above
prevents us from computing the optimal θ in closed form. This motivates that not all convex
functions10 have closed-form solutions.

C Numerical differentiation and Taylor approximations

We defined the derivative of a function f at a point x(0), f ′(x(0)) using the finite difference as:

f ′(x(0)) =
f(x(0) + h)− f(x(0))

x(0)
,

for some relatively small perturbation, h, in the order of O(10−5). We will now proceed to
show how this is resultant of a first order approximation of f(x) around x(0).

From Taylor’s remainder therem, f(x) around x(0) can be realized as

f(x) = f(x(0)) + f ′(x(0))(x− x(0)) +
1

2
f ′′(ξ)(x− x(0))2︸ ︷︷ ︸

remainder

,

for some ξ in between x(0) and x. Using remainder is a more rigorous than simply writing
O((x − x(0))2), but they drive the same point. Now, if we evaluate f(x) at x = x(0) + h for
some small perturbation h, we get

f(x(0) + h) = f(x(0)) + f ′(x(0))h+
1

2
f ′′(ξ)h2,

which gives us

f ′(x(0)) =
f(x(0) + h)− f(x(0))

h
− 1

2
f ′′(ξ)h.

If we ignore the “(1/2)f ′′(ξ)h” term above, i.e., essentially resorting to a first-order approxi-
mation, we incur an O(h) error in our estimation of the derivative. We can further refine this
approximation by considering a centered and symmetric difference—for some ξ between x(0)

and x(0) + h and ζ between x(0) − h and x(0), we have:

f(x(0) + h) = f(x(0)) + f ′(x(0))h+
1

2
f ′′(x(0))h2 +

1

6
f ′′′(ξ)h3;

f(x(0) − h) = f(x(0))− f ′(x(0))h+
1

2
f ′′(x(0))h2 − 1

6
f ′′′(ζ)h3.

10We leave it as a self-exercise to show that the logistic cost function is convex.
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Now, subtracting the above equations leaves us with

f(x(0) + h)− f(x(0) − h) = 2f ′(x(0))h+
1

6
(f ′′′(ξ) + f ′′′(ζ))h3,

which gives us the derivative as

f ′(x(0)) =
f(x(0) + h)− f(x(0) − h)

2h
− 1

12
(f ′′′(ξ) + f ′′′(ζ))h2.

Same as before, if we use the second-order approximation and ignore higher-order terms result-
ing in an O(h2) error, we have

f ′(x(0)) =
f(x(0) + h)− f(x(0) − h)

2h
,

which is often known as the “symmetric difference” version.
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