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Probabilistic modeling, MLE and MAP Estimates

Probabilistic modeling: Estimate P(X,y)  
(or P(Y|X) directly) and use it instead

CS 3780/5780

Recall the ML Setup:

If we knew P(X, Y) or even just P(Y|X), we could compute 
Bayes Optimal Classifier

For classification: more generally:

R = “Rain”,    N = “No Rain”

D = {R, N, N, N, R, N, N}

Estimating Bernouilli R.V.: Yearly rain/no Rain

X = {} 
Y = {R, N}

What would your estimate for P(Y) be given data D?

(X,Y) ~ P

Can we derive this formally?

Modeling assumption: rain/no rain drawn i.i.d. 
"Independent and Identically distributed"

p = P (Y=R) nR = # Rainy days 
nN = #no rain days

What is the likelihood of data D under model with 
parameter p?

Discriminative

Generative: P (X|Y) P (Y)

h(x) =
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1. Parameterize P(X,Y) by some family of 
 distributions P  s.t.  
 
2. Estimate P(X, Y) (or P(YIX)) by picking        based o n              
 Data D

Maximum Likelihood estimator: Pick         that 
maximizes likelihood of observation of data D

1 Often referred to as frequentist view 
2 when         generates the data ,             (As n       )

Steps to compute MLE:

Pick the probabilistic model, and identify parameters 1.
for that model  
Write down the likelihood of data under model 2.
parameter 
Write down the log likelihood of data D and simplify 3.
the expression  
Maximize the expression w.r.t. parameter and hence find 4.
the MLE estimate

"All models are wrong, 
                ...but some are useful" - George Box
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Eg 1. Rain Data D = {R, N, N, N, R, N, N}

Eg 2:

D= {176, 177 , 169 , 168 ,... }

1. Heights of Adult Male (or female) 
2. Shoe size  
3. Blood pressure 

Normally distributed
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Charles Darwin 

Francis Galton Raphael Weldon Karl Pearson 

Evolution Via Natural 
Selection

Gaussian Mixture Model :

Evolution is gradual (small 
changes over generations)

Evolution is discontinuous

crabs from Naples
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MLE does not capture prior knowledge
Eg1.  Rain , No Rain . 
Say we had prior info that at similar locations typically 
we have seen Rain on 30 out of 100 days, how do we use this?

Heuristic :

Maximum Aposteriori Estimator : MAP 
Model is an abstraction that captures our belief, we update our belief based 
on Data.

 is a Random variable

log Priorlog likelihood

Rain/No Rain Eg. Beta prior:
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Often MAP is referred to as Bayesian view 
 
There is Bayesian and there is BAYESIAN 
 
True Bayesian: "There is no model, all you are 
estimating is y" .
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