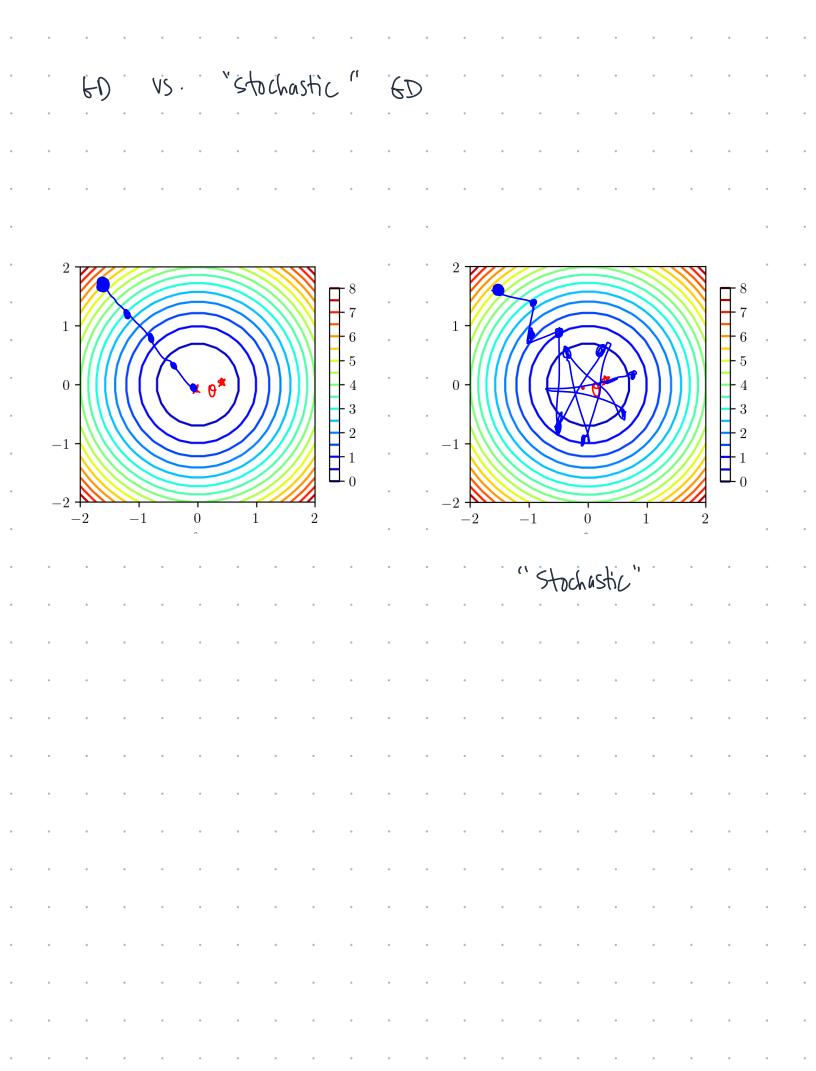
ANNOUNCEMENTS

1. HW3 due Friday, late due Sunday - NO extensions beyond late die z. prelim conflict form - fill by 3.30 pm today ! 3. P3 the changed from 03/04 -> 03/05 1159 pm 4. Prelim logistics - will also be posted to Ed later! 5. Mwy to be released w/ solutions (soon!) TIME TO TURN YOUR NON-NOTE-TAKING DEVILES OFFI

| ·   | 50<br> | FAR   |       | ٠   | •                   | •        | ٠         | •    | •          | ٥         | ٠                | •    | ٠   | ٠     | ٠    | ٠    | •    | •   | ٠   |  |
|-----|--------|-------|-------|-----|---------------------|----------|-----------|------|------------|-----------|------------------|------|-----|-------|------|------|------|-----|-----|--|
| •   | •      | 0     | •     | •   | •                   | ·<br>. } | }. 1      | N. \ | •          | •         | •                | •    | •   | . J   | .↑   | •    | •    | •   | •   |  |
| •   |        | ٠     | ٠     | •   | •                   | •        | 0         |      |            | •         |                  | ٠    | ٠   | ٠     | •    | ۰    |      | •   | • • |  |
| ٠   | ٠      | ۰     | •     | ٠   | ٠                   | ٠        | •         | •    | •          | •         | ÷                | ٠    | VS. | •     |      | •    | •.   |     |     |  |
| ٠   | ٠      | ٠     | ٠     | ٠   | •                   | •        | •         | •    | •          | •         |                  |      | •   | •     |      | •    | •    |     |     |  |
| R   | EGIN   | AE    |       | ٠   | •                   | •        | ٠         | •    | •          | o         | • × <sup>•</sup> |      | •   | •     |      |      | •    | •   | ×   |  |
| ۰   | Shr    | er in | sed   | \e  | B(N                 | -<br>\n( | •         | •    | has        | lab       | els              | ٠    | ٠   | ٠     | ٠    | ۰    | ٠    | •   | ø   |  |
| ٠   | Uhs    | u per | vised |     | envi                | n h      | ).<br>\ · | r    | 10         | labe      | S                | •    | ٠   | ٠     | •    | ٠    | •    | •   | ٥   |  |
| •   | •      |       | ٠     | •   | •                   | • .      |           | •    | •          | •         | •                | •    | •   | 0     | ٠    | •    | ٠    | •   | •   |  |
| •   | •      | •     | •     | •   | •                   | •        |           |      | •          | •         | •                | •    | •   | •     | •    | •    | •    | •   | •   |  |
| st  | inat   | ng    | ູ້ ເວ | s+" | fu                  | ncti     | ٥n        |      | ٠          | MLE       | , r              | n BP | ٠   | ٠     | ٠    | ٠    | 0    | •   | 0   |  |
| •   | •      |       | •     | •   | •                   | •        | •         | ٠    | ٠          | ٥         | •                | ٠    | ۰   | ٠     | ٠    | •    | ٠    | •   | ۰   |  |
| ٠   | •      | ٠     | •     | ٠   | •                   | •        | ٠         | ٠    | •          | ٠         | ٠                | •    | ٠   | ٠     | •    | ٠    | ٠    | •   | ۰   |  |
| OP- | 11m12- | ATIO  | N -   |     | +(                  | irat     | ive       | QQ   | ,<br>pp no | pache     | 5 :              | . 6  | D,  | A.J.A | fra  | ز له | Inom | ent | ΛŴ, |  |
|     |        | 0     | •     | •   | •                   | ٠        | 0         | . \  | •          | ٠         | ٠                | •    | •   | . V.  | lewt | ۵Ŋ,  | ٠    | ٠   |     |  |
| ۰   | ٠      | ٠     | •     | ·F  | $\setminus \langle$ | •        | 0         | ٠    | •          |           | •                | ٠    | ٠   | ٠     | ٠    | ٠    | ٠    | •   | ٥   |  |
| •   | •      | •     | •     | •   |                     |          | •         | •    |            |           | •                | •    | •   | •     | •    | •    | •    | •   | •   |  |
| •   | •      | •     | •     | •   |                     |          | \.<br>\.  | •    |            | · ( • )   | •                | •    | •   | •     | •    | •    | •    | •   | 0   |  |
| 0   | •      | ۰     | • -   | •   |                     |          |           |      |            | 0(0)<br>⊖ | •                | •    | •   | o     | ٠    | ٠    | ٠    | •   | ٠   |  |
| •   | ٠      | ٠     | •     | ٠   |                     | ٠        | •         | 0.28 | •          | 0         | ٠                | ٠    | ٠   | ٠     | ٠    | •    | ٠    | •   | ٠   |  |
| ٠   | •      | ٠     | ٠     | ٠   | •                   | •        | ٠         | •    | •          | ۰         | •                | •    | •   | ٠     | •    | ٠    | ٠    | •   | ۰   |  |
| 0   | ٠      | ٠     | ٠     | 0   | ٠                   | ٠        | ٠         | ٠    | ٠          | ٠         | ٠                | ٠    | ٠   | ٠     | ٠    | ٠    | ٠    | ٠   | ٠   |  |
| ٠   | •      | •     | ٠     | •   | •                   | •        | 0         | •    | ٠          | ۰         | •                | ٠    | •   | ٠     | ٠    | •    | ٠    | •   | 0   |  |
| 0   | •      | •     | ٠     | •   | •                   | •        | ٠         | ٠    | •          | ٠         | •                | •    | •   | ٠     | •    | ٠    | ٠    | •   | ۰   |  |
| •   | •      | •     | ٠     | •   | •                   | •        | •         | ٠    | •          | ٠         | •                | •    | •   | ٠     | •    | •    | ٠    | •   | ٠   |  |

TODASM . Linear regression instead of a discute class, we wish to predict a (supervised vetting) continuous y' temperature (in F) b. סך X = chirp rate 14. temperature = 0, + 0, chirp rate + E \_ unmodeled noise Lan we recover the "green" line? GOAL temperature = 0, + 0, x chirp rate are trying to learn some "h" \ve  $h(x^{(j)}; 0) = 0, 1 + 0, x_1^{(j)} + 0, x_2^{(j)} + \dots + 0, x_d^{(j)}$  $= \underbrace{\overset{d}{\varepsilon}}_{i=0} \theta_{i} \times \overset{(j)}{i} = \underbrace{\overset{d}{\varepsilon}}_{i=0} \theta^{\tau_{i}} \overset{(j)}{\times}_{i} \overset{(j)}{\times}_{i=0} \left[ \begin{array}{c} \times \overset{(j)}{\varepsilon} = 1 \\ \times \overset{(j)}{\varepsilon} \end{array} \right]$ × <sup>(j)</sup> = 1 () XJ()


LOST FUNCTION <u> I(0)</u> 1 (y) 19-QTXQ true value minimize 60AL :  $\theta_{X}(j)$  $| (y^{(j)} - \theta^T \overset{\sim}{\times} \theta) |$ estimate XŴ \_X' for all J.  $J(0) = \frac{1}{2n} \sum_{j=1}^{n} \left( y^{(j)} - o^{T} \tilde{x}^{(j)} \right)^{2}$ Bo+ OI chirp rate = <sup>°</sup> 0<sup>7</sup> [ chirp rate average squared derivation b/w observed y<sup>(j)</sup> predicted o<sup>T</sup>X<sup>(j)</sup>

HOW DO WE FIND "OPTIMAL" to minimize J(0) 0. Mick's idea - use GD. starting with some Q(.) move in steppest descent direction  $\theta_{(k+l)} = \theta_{(k)} + \alpha \left(-\Delta \mathbf{1}(\theta_k)\right) \longrightarrow$ step size I JJ (0<sup>k</sup>), or more generally, JJ(0) NEED  $\mathcal{J}(\theta) = \frac{1}{zn} \sum_{j=1}^{\infty} \left( y^{(j)} - \theta^{T} \chi^{(j)} \right)^{z}$  $\frac{\partial \sigma}{\partial \theta_{i}} = \frac{\partial \sigma}{\partial \theta_{i}} \frac{1}{\sigma \sigma} \frac{\sigma}{\sigma \sigma} \frac{1}{\sigma \sigma} \frac{\sigma}{\sigma \sigma} \frac{\sigma}{\sigma \sigma} \frac{\sigma}{\sigma} \frac{\sigma}{\sigma}$  $\Delta \widehat{\mathcal{I}}(\theta) = \left(\begin{array}{c} \underline{S2} \\ \underline{S0} \\ \underline{S1} \end{array}\right)$  $= \frac{1}{2n} \sum_{j=1}^{2} \frac{3}{20_{j}} \left( y - 0^{T_{x}} y \right)^{2}$  $= \mathbb{X}(y_{0}^{(i)} - \theta^{T} \chi^{(j)}) \frac{\partial}{\partial q_{1}}(y_{0}^{(i)} - \theta^{T} \chi^{(j)})$ 2 ptx y)  $\frac{\partial}{\partial \theta_{i}} \theta_{i}^{T} \hat{x}_{i}^{(j)} = \theta_{i} + \theta_{i} x_{i}^{(j)} + \dots + \theta_{i} x_{i}^{(j)} + \dots + \theta_{d} x_{d}^{(j)}$ 90;  $\frac{\partial \dot{J}}{\partial x} = \frac{-1}{N} \frac{\ddot{\zeta}}{\hat{J}^{-1}} \left( \frac{\partial \dot{\theta}}{\partial x} \frac{\partial v}{\partial y} \right) \frac{\dot{\zeta}}{\dot{\chi}_{i}}$ for one <u>O</u>;  $\boldsymbol{\theta}_{1}^{(K+1)} = \boldsymbol{\theta}_{1}^{(K)} + \boldsymbol{\alpha} \left( \frac{1}{n} \sum_{j=1}^{n} (y^{j} - \boldsymbol{\theta}_{X}^{T} y^{j}) \times_{i}^{(j)} \right) \xrightarrow{}$  $\theta^{(K+1)} = \theta^{(K)} + \frac{\alpha}{n} \stackrel{\text{eff}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}}\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}}{\stackrel{\text{fer}}{\stackrel{\text{fer}}}\stackrel{\text{fer}}{\stackrel{\text{fer}}}\stackrel{\text{fer}}{\stackrel{\text{fer}}}\stackrel{\text{fer}}{\stackrel{\text{fer}}}\stackrel{\text{fer}}{\stackrel{\text{fer}}}\stackrel{\text{fer}}{\stackrel{\text{fer}}}\stackrel{\text{fer}}{\stackrel{\text{fer}}}\stackrel{\text{fer}}{\stackrel{\text{fer}}}\stackrel{\text{fer}}{\stackrel{\text{fer}}}\stackrel{\text{fer}}{\stackrel{\text{fer}}}\stackrel{\text{fer}}{\stackrel{\text{fer}}}\stackrel{\text{fer}}{\stackrel{\text{fer}}}\stackrel{\text{fer}}\\{\stackrel{fer}}\\\stackrel{\text{fer}}}\stackrel{\text{fer}}\\\stackrel{\text{fer}}}\stackrel{\text{fer}}\\\stackrel{\text{fer}}}\stackrel{\text{fer}}\stackrel{\text{fer}}}\stackrel{\text{fer}}\\{\stackrel{fer}}\stackrel{\text{fer}}}\stackrel{\text{fer}}\stackrel{\text{fer}}}\stackrel{\text{fer}}\stackrel{\text{fer}}}\stackrel{\text{fer}}\stackrel{\text{fer}}}\stackrel{\text{fer}}}\stackrel{\text{fer}}}\stackrel{\text{fer}}\stackrel{\text{fer}}}\stackrel{\text{fer}}\stackrel{\text{fer}}}\stackrel{\text{fer}}\stackrel{\text{fer}}}\stackrel{\text{fer}}}\stackrel{\text{fer}}\stackrel{\text{fer}}}\stackrel{\text{fer}}}\stackrel{\text{fer}}\stackrel{\text{fer}}}\stackrel{\text{fer}}\stackrel{\text{fer}}}\stackrel{\text{fer}}\stackrel{\text{fer}}}\stackrel{\text{fer}}\stackrel{\text{fer}}\stackrel{\text{fer}}\stackrel{\text{fer}}\stackrel{\text{fer}}\stackrel{\text{fer}}\stackrel{\text{fer}}}\stackrel{\text{fer}}\stackrel{\text{fer}}\stackrel{\text{fer}}\stackrel{\text{fer}}\stackrel{\text{fer}}\stackrel{\text{fer}}\stackrel{\text{fer}}\stackrel{\text{fer}}\stackrel{\text{fer}}\stackrel{\text{fer}}\stackrel{\text{fer}}\stackrel{\text{fer}}\stackrel{\text{fer}}\stackrel{\text{fer}}\stackrel{\text{fer}}\stackrel{\text{fer}}\stackrel{\text{fer}}\stackrel{\text{fer}}\stackrel{\text{fer}}\stackrel{$ 

For hight at converge 1 if >1 optimes  
to gubil patient  

$$J[0] = \frac{1}{2n} \sum_{j=1}^{n} (y^{(j)} - p^{T} x^{(j)})^{2}$$
 is "nice"  
(onvex,  $v \in T$  minimes, GD will converge!  
Q. What is the cost of terming one update  $(k \rightarrow k+1)$   
of GD, in terms of  $n = detectors 1$   
 $d = terme dimension !
 $g(k+n) = g(k) + \frac{1}{n} \left(\sum_{j=1}^{n} (y^{(j)} - o^{T} x^{(j)}) \times y\right) \rightarrow 0.(4)$   
Adityon Sings " $O(nd)$ ."  
 $g(nd)$   
 $g = Jeasons change, GD We update :($$ 

| Computational complexity of <u>one</u> update step of <u>GD</u><br>Q: CAN WE DO BETTER-? |   |    |                  |           |          |                    |          |                   |                              |        |           |             |              |            | •    |      |           |   |   |
|------------------------------------------------------------------------------------------|---|----|------------------|-----------|----------|--------------------|----------|-------------------|------------------------------|--------|-----------|-------------|--------------|------------|------|------|-----------|---|---|
| •                                                                                        | • | ٠  | • •              | ٠         | • •      | ٠                  | ٠        | ٠                 | •                            | ر :    | . the     | r pro       | <u>b</u> lem | (( )<br>   | ٠    | •    | •         | ٠ | • |
| ٠                                                                                        | • | ٠  | • •              | •         | • •      | ٠                  | ٠        |                   |                              |        |           |             |              |            | ٠    | ٠    | ٠         | 0 | ٠ |
| ٠                                                                                        | ٠ | ٠  | r ∋r             | 0 (k      | -H)<br>  | θ <sup>(κ)</sup>   | +        | 2                 |                              | (بي لر | D_ C      | th G)<br>MX | ) ×(         | <i>(</i> ) | •    | ٠    | •         | ٠ | • |
| •                                                                                        | • | •  |                  |           |          |                    |          |                   |                              |        |           |             |              |            | A.1  | ite. | factor    |   | ٠ |
| •                                                                                        | • | •  | Η'n              | <u>0F</u> | ţţ       | ale o              | in c     | ~ ppm             | XIMA                         |        | otep      | ., (        | ,<br>21 (01  | າງ         | of 7 |      | - 10(3101 | ļ | • |
| ٠                                                                                        | ٠ | ٠  | • •              | ٠         | ДТ       | = <u>1</u>         | . n<br>Ø | ( v               | ).<br>)/_ (0                 | ŢžŰ    |           | D           | •            | •          | •    | ٠    | •         | ٠ | • |
| •                                                                                        | 0 | ٠  | • •              |           |          |                    |          |                   |                              |        |           |             | ٠            | ٠          | ٠    | •    | •         | 0 | ۰ |
| •                                                                                        | • | \. | Sample           | e So      | me       | ) <sup>(</sup> nir | form     | <u>سُ</u> م       | t to                         | indon  | n' fr     | ΰm ·        | train        | g se       | ŀ    | ٠    | •         | • | • |
| •                                                                                        | • | Z. | Sample<br>Comput | e.        | ک بہ ک   | AS                 |          | y <sup>(j)_</sup> | $\theta^{T_{\widetilde{X}}}$ | (j)    | ∾(j)<br>× | •           | •            | •          | •    | •    | •         | • | • |
| •                                                                                        |   | •  |                  |           |          |                    |          |                   |                              |        |           |             |              | ٠          | ٠    | •    | •         | ٠ | • |
| ٠                                                                                        | ۰ | ٠  | • •              | Jay       | ر معنى   | ٠                  | d) (     | for               | this.                        |        |           | approd      | ! Ch !       | ٠          | •    | 0    | ٠         | ٠ | • |
| ٠                                                                                        | • | ٠  | " cl. d          | •         | 11 (0    | ٠                  | •        | •                 | •                            | ٠      | •         | •           | •            | •          | •    | ٠    | •         | • | • |
| •                                                                                        | • | ٠  | Stou             | nasti(    | <u> </u> | ٠                  | •        | •                 | ٠                            | ٠      | ٠         | •           | ٠            | •          | •    | •    | ٠         | • | • |
| ٠                                                                                        | ٠ | ٠  | • •              | ٠         | • •      | ٠                  | ٠        | ٠                 | ٠                            | ٠      | ٠         | ٠           | ٠            | ٠          | ٠    | ٠    | •         | ٠ | ٠ |
| ٠                                                                                        | • | ٠  | • •              | ٠         | • •      | ٠                  | ٠        | ٠                 | •                            | ٠      | ٠         | ٠           | 0            | ٠          | ٠    | ٠    | •         | ٠ | ٠ |
| •                                                                                        | • | ٠  | • •              | ٠         | • •      | ٠                  | ٠        | ٠                 | ٠                            | ٠      | ٠         | •           | •            | ٠          | ٠    | •    | ٠         | • | • |
|                                                                                          |   |    | • •              |           |          | ٥                  |          |                   |                              |        |           |             |              |            |      |      |           |   |   |
|                                                                                          |   |    | • •              |           |          |                    |          |                   |                              |        |           |             |              |            |      |      |           |   |   |
|                                                                                          |   |    | • •              |           |          | •                  |          |                   |                              |        |           |             |              |            |      |      |           |   |   |
|                                                                                          |   |    | • •              |           |          |                    |          |                   |                              |        |           |             |              |            |      |      |           |   |   |
| ٠                                                                                        | ٠ | ٠  | • •              | ٠         | • •      | ۰                  | ٠        | ٠                 | ٠                            | ٠      | ٠         | •           | •            | ٠          | ٠    | ۰    | ٠         | ٠ | • |
| ٠                                                                                        | ۰ | ٠  | • •              | ٠         | • •      | ٠                  | ٥        | ٠                 | ٠                            | ٠      | •         | ٠           | ٠            | ٠          | ٠    | ۰    | ٠         | ٠ | • |
| •                                                                                        | • | •  | • •              | •         | • •      | ٠                  | ٠        | •                 | •                            | •      | •         |             | •            |            | •    | •    | •         | • | • |



Arrother idea: 
$$closed - form Subtron to 'least-squares''
objective
Nex" - trice derivative of J with  $\Theta$  set o, sole for  $\Theta$ ?  
design nutrix  
 $X = \begin{bmatrix} x0^T \\ -x^{0T} \end{bmatrix} = \begin{bmatrix} y^{00} \\ \vdots \\ y^{00} \end{bmatrix} - \begin{bmatrix} -x^{0T} \\ -x^{0T} \end{bmatrix} \Theta = \begin{bmatrix} y^{00} \\ \vdots \\ y^{0} \end{bmatrix}$   
 $h \times dH$   
 $y = X \Theta = \begin{bmatrix} y^{00} \\ \vdots \\ y^{0} \end{bmatrix} - \begin{bmatrix} -x^{0T} \\ -x^{0T} \end{bmatrix} \Theta = \begin{bmatrix} y^{00} \\ y^{0} \end{bmatrix}$   
 $h \times dH$   
 $\frac{1}{2n} (y - X\Theta)^T (y - X\Theta) = \frac{1}{2n} (y^{00} - x^{0T}\Theta)^2 + \cdots + (y^{(m} - x^{(m}\Theta)^2)^2)$   
 $= \frac{1}{2n} \sum_{i=1}^{n} (y^{0}A)^T (y - X\Theta) = (y^T - \Theta X^T) (y - X\Theta)$   
 $J(0) = \begin{bmatrix} 1 \\ 2n \\ 2n \end{bmatrix} (y - X\Theta)^T (y - X\Theta) = (y^T - \Theta X^T) (y - X\Theta)$   
 $= y^T - \Theta X^T - y^T + \Theta X^T X \Theta$   
 $ignore for now O$$$

 $\nabla_{\theta} \theta_{X}^{T} = X$  $\nabla_{\theta} \mathbf{j} = \nabla_{\theta} - \mathbf{0}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y} - \mathbf{y}^{\mathsf{T}} \mathbf{X} \mathbf{\theta} + \mathbf{0}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{\theta}$  $\nabla_{\theta} J \stackrel{\text{def}}{=} 0 \Rightarrow$  $\nabla_{\Theta} \theta^{T} A \theta =$ (AIAF) Q  $\nabla_{\theta} \left( - 2\theta^{\dagger} X_{y}^{T} + \theta X X \theta \right)$  $a \cdot b = b \cdot a = a^{T} b = b^{T} a$  $\theta^T X_y^T = y^T X \theta$  $= - 2Xy + (X^{T}X + (X^{T}X)^{T})0$ = - 2Xy + 2X^{T}X0  $-2X_{y} + 2X_{x0} = 0$ VoJ <u>Vet</u> 0  $\theta^{\star} = (x^T x)^T x^T y$ Q: why choose ED/SED if we have closed-form solution? Inverting XX is problematic — can be near singular or singular  $(X^{T}X)^{-1} \longrightarrow O(nd^{2})$ forming  $X^{T}X \longrightarrow O(nd^{2})$  $\theta^{\bigstar} \rightarrow 0(nd^2+d^3)$  $V_{VS} = \mathcal{O}(\mathcal{A})$ 

| • | •      | Ren | żsifi              |             | le          | enst   | squ   | Nares           | 2                             | <u>(0)</u>              | •         | m    | robal             | pilis  | fic | Vilh | ) | • | • | • |
|---|--------|-----|--------------------|-------------|-------------|--------|-------|-----------------|-------------------------------|-------------------------|-----------|------|-------------------|--------|-----|------|---|---|---|---|
| • | h      | wa  | (n 4 S             | s da        | ta          | gene   | rated | ้า เ            | ٠                             | •                       | •         | •    | ٠                 | •      | •   | •    | • | • | • | • |
|   | •      |     | •                  |             |             | yD.    | = 0   | UX <sup>T</sup> | ) + (                         | <u>- (</u> ))           | •         |      | •                 | •      |     | •    | • |   | • | • |
| A | (451)m | ι.  | 45 r               | ) N (       | 0,0         | 52)    |       |                 |                               |                         | •         | •    | •                 | 0      | •   | •    | • | • | • |   |
|   |        |     |                    | $R( \in G)$ | رژ          |        | •     | exp             | $\left( -\frac{1}{2} \right)$ | $(\in \mathbb{Q}^{-1})$ | -0)2      | `\   | ٠                 | ۰      | •   | •    | • | • | • | • |
| ٠ | ٠      | ٠   | ٠                  |             |             | =      | मण    | •               | <                             | 20                      |           | )    | ٠                 | ٥      | 0   | ٠    | • | ٠ | ٠ | • |
| • | ۰      |     |                    |             |             |        |       |                 |                               |                         |           |      | Tai (in           | \Z\    | •   | •    | • | • | ٠ | • |
| • | ۰      | ٩.  | ( y <sup>(j)</sup> | ×Φ          | <u></u> غ ز | ) -    | -     | \               | exf                           | e (. –                  | <u>S</u>  | - 0  | · 次 <sup>93</sup> | ) `    | ).  | ٠    | • | • | ٠ | ٠ |
| • | ٠      | •   | ٥                  | ٠           | •           |        | JZ    | সি              | 0                             |                         | ٠         | 20   | •                 |        | •   | ٠    | • | • | ٠ | • |
| ٠ | 0      | ۰   | ۰                  | •           | ٠           | • •    | ۰     | •               | ٠                             | ٠                       | ٠         | ٠    | •                 | ٠      | 0   | •    | • | ٠ | ٠ | ٠ |
| • | ٠      | ٠   | ٠                  | •           | tem         | pla    | ture. | Cin             | F)                            | • (                     | saussi    | 210  | ٠                 | ٠      | ٠   | •    | • | • | ٠ | • |
| • | 0      | •   | ۰                  | ٠           | •           | .y.    | •     | •               | 0                             | •                       | .vit      | h. M |                   |        | •   | •    | • | • | ٠ | ٠ |
| • | 0      | ٠   | 0                  | ٥           | ٠           | • •    | ٠     | ٠               | 0                             | •                       |           |      | •                 | e      | ٠   | ٠    | • | • | ٠ | ٠ |
| ٠ | ٠      | ٠   | •                  | •           | ٠           | • •    |       |                 | • •-                          |                         |           | •    | •                 | ٠      | •   | •    | • | • | ٠ | • |
| ٠ | 0      | ٠   | ۰                  | ٠           | ٠           | • •    | ۰     | •               |                               |                         | •         | ٠    | ٠                 | •      | ٠   | •    | 0 | ٠ | 0 | • |
| ٠ | ٠      | ٠   | ø                  | ٠           | ٠           |        |       | •               | • • •                         | •                       | ٠         | ٠    | ٠                 | ٥      | 0   | ٠    | • | ٠ | ٠ | • |
| • | ۰      | •   | ٠                  | •           | •           | • •    |       | •               | •                             |                         | ٠         | 0    | •                 | ٠      | •   | •    | • | • | ٠ | • |
| ٠ | 0      | ٠   | 0                  | ٥           | ٠           | • •    | •     | ٠               | 0                             | •                       | ٠         | Ϋ́ = | = ch              | ivid v | ate | ٠    | 0 | ٠ | 0 | ۰ |
| • | •      | •   | ٥                  | •           | •           |        | •     | •               | ٠                             | •                       | •         | •    | •                 |        | •   | •    | • | • | ٠ | • |
| • | ۰      | •   | •                  | •           | •           | • •    | ٠     | •               | ٠                             | •                       | •         | •    | •                 | ٠      | ٠   | •    | • | • | ٠ | ٠ |
| • | ٠      | •   | •                  | •           | •           |        | •     |                 | •                             | •                       |           |      | •1. 1.1.          |        |     | 0. L | • | • | ٠ | ٠ |
| ٠ | 0      | ٠   | FOAL               | •           | . ES        | timate | 2     | 6               | 40                            | M W                     | X \ M \ I |      | (Ke 1) M          |        | 94  | anta | • | ٠ | 0 | • |
| ٠ | ٠      | ۰   | o                  | ٠           | ٠           | • •    | ٠     | ٠               | ٥                             | ٠                       | ٠         | ٠    | ٠                 | 0      | 0   | ٠    | • | ٠ | ٠ | ٠ |
| • | ۰      | •   | ٥                  | •           | •           |        | ٠     | •               | ٠                             | •                       | •         | ٠    | •                 | ٠      | •   | •    | • | • | ٠ | • |
| • | ٥      | •   | ٥                  | •           | •           | • •    | ۰     | •               | ٠                             | •                       | •         | o    | •                 | ۰      | •   | •    | • | • | ۰ | ۰ |
| • | ٠      | •   | ٠                  | ٠           | •           | • •    | •     | •               | ٠                             | •                       | •         | •    | •                 | ٠      | •   | •    | • | • | • | ٠ |

 $L(0; X, y) = P(D; 0) = \prod_{j=1}^{m} P(x^{(j)}, y^{(j)})$ Constant  $= \prod_{\substack{i=1\\ i \in I}} P(y^{i}) (X^{i}) P(x^{i})$ under optimization  $n = \prod_{j=1}^{n} P(y^{(j)}|x^{(j)}; \theta)$  $\mathcal{N}\left(\theta^{\mathsf{T}}\boldsymbol{X}^{(j)};\sigma^{\mathsf{Z}}\right)$  $L(0) = \operatorname{arg} \max \operatorname{p} P(y^{(j)}|x^{(j)}; 0)$  $lrg(L(0)) = argmax \stackrel{o}{\in} bg P(y^{(j)}|x^{(j)}; 0)$ Q (0) =.  $\sum_{j=1}^{n} \frac{1}{\sqrt{2\pi}} \left( \frac{1}{\sqrt{2\pi}} \cdot \exp\left(-\frac{(y)}{\sqrt{2\pi}} - \frac{1}{\sqrt{2}} \frac{y}{\sqrt{2}}\right)^2 \right)$  $\sum_{j=1}^{n} \frac{b_{j}}{b_{j}} \frac{1}{b_{1}} + \frac{(y^{(j)} - 0^{T} \chi^{(j)})^{2}}{2\sigma^{2}}$ Argmax (x)  $(y) = 0^{T} (y)^{2}$ =  $\frac{1}{20^{2}} (y)^{2} - 0^{T} (y)^{2}$  $\equiv \operatorname{Alg}_{Q} \operatorname{min}_{25^2} \frac{1}{j^{-1}} \stackrel{\mathcal{E}}{=} (y_{-}^{(j)} \stackrel{\mathsf{T}}{\to} y_{-}^{(j)} \stackrel{$ function  $\equiv \min_{\substack{0 \ y \in y}} \frac{1}{2} \underbrace{(y^{(j)} - o^{f_{x}}y)}_{y = y}$ autor of 1/2 depend on J RIS, hows my