ANNOUNCEMENTS 1. HW2 late due tomorrow, 5pm (NOT 11.59 pm) 2. Prelim conflict declaration out on Ed (fill by 03/04) TURN YOUR NON-NOTE-TAKING DENCES OFP NOW! while you wait, here's an icebreaker - Did you go sledding on the slope this semester? Did starting at different parts of the slope affect your speed?

TODA	Y	U.PT	SIMIS	ATIO	N .	٠	•	0 0	٠	•	•	•	•	• (
, la	yistic	re	gress	ion	Cos	t f	un ctio) V]	•	. (j)	т. с.	· 、	0	• •
•	0 0	¢	•	J (0	-) =		100) (14	-e	y 00 0	۲. Χ _ο δ		0	• •
	••••	•	٠	٠	• •	· 9 -	-1	• •	, Sol	٠	•	٠	0	• •
	tark					Set			•	•	•	•	•	• •
(ro R		•	inste	ead	of.	Com	pute	the	[°] ana	nlytic	a\"	' de	nva:	H've
٠	Inst	end	we	Se	.ek	p fi	nd	itua	tes		٠		•	• (
٠	• •	٠						, sta	ØV	10.55	G			• •
•	100	20	ÌS	Tha	ŀt,	come	np	with	UON	e <u>1</u>	terat	nor	; ;	5
٥	• •	¢		_	nat .	٥	e it	eration	∩ °	٠	٠	٠	•	• •
٠	• •	iQ	(KH)	- (-(0	H)	e	- cstim	٠	٠	•	٠	•	• •
•	ext e	.stime	ite o	(0	• •	``u	urrent	- cstim	nte	•	•	•	•	• •
٠	• •	٠	•	٠	• •	٠	٠	• •	•			•	•	• •
Esh	an s	erys -	<u> </u>	. e (0")	= 0	• —	- "fi	xed	point	•	of (<u>)</u> •	• •
•	• •	•	0	•	• •	•	•	• •	•	•	•	•	•	• •
•	• •	٠	•	•				• •						• •
٠	• •	٠	۰	•				• •						
•	• •	•	•	•	• •			• •						
٠	• •	0	۰	٠	• •	٥	0	• •	•	•	•	٠	٠	· .

•

•

•

•

•

•

•

•

•

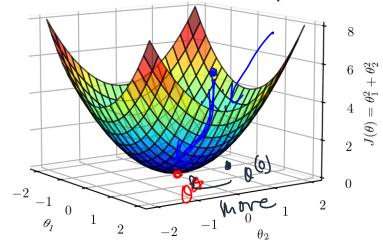
•

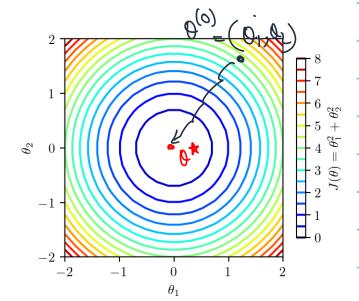
.

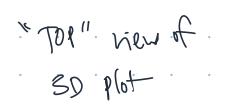
•

•

•


٠


•


•

DEA-1 : 6 RADIENT DESCENT biven $Q^{(0)}$, $Q^{(k)}$ Example $f(0) = 0_1^2 + 0_2^2$ Q= Jor Dz specifically, \rightarrow what is $0^*? = \begin{bmatrix} 0\\0 \end{bmatrix}$ $0^{*} = \arg \min_{P} J(Q)$

minimize

DEFIVATIVES $f'(x^{(0)}) = f(x^{(0)}+h) - f(x^{(0)})$ $\mathcal{P} = O\left(10_{-2}\right)$ when dealing with vectors, take pointials! $\mathcal{T}(\theta_{1},\theta_{2}) = \theta_{1}^{2} \theta_{1}^{2} \theta_{2}^{2}$ $\frac{\partial f}{\partial v_1} = 2 \theta_2$ $\frac{90^{1}}{92} = 50^{1}$ evaluate at (0,2) $\frac{\partial J}{\partial v_1} = 20_1 = 0 \qquad \frac{\partial J}{\partial v_2} = 20z = 4$ $f(o_2 + h) = f(o_2) + \frac{2f}{2o_2} h$ $f(0, +h) = f(0, +\frac{34}{30})$ = f(Q) + 0 increasing "h" doesn't affect f(Orth) = f(Or) + 4h S increase Or Ly"h" complies f by "4h" So long as small h'

this sensitivity measure can help navigate OBSERVATION : <u>`</u>_ muximal impact can be understood! "J" moves sol 3(0) θ_2 -2 A (0) Move $^{-1}$ $_0$ along this direction $_{-2}$ -2 $^{-1}$ 0 $\begin{smallmatrix} 0 & 1 \\ \theta_2 & \end{smallmatrix}$ 21 θ, $^{-1}$ 2 -2-2 $^{-1}$ 0 1 (Mhy) θ_1 $\frac{30}{30} = 0^{\circ}, \frac{30}{20} = 2^{\circ}, \frac{30}{20} =$ "Convenience " notation $\sqrt{2} \left(\frac{1}{2} \left(\frac{1}{2} \right)^{2} \right)^{2} = \sqrt{2} \left(\frac{1}{2} \left(\frac{1}{2} \right)^{2} \right)^{2} = \left(\frac{1}{2} \right)^{2} \left(\frac{1}{2} \right)$ The "GRADIENT" evaluated at 0(0) Vector

FRADIENT tells us "steepest" ascent, DEA so, nove in the opposite direction to gradient movement direction 1 $J(\theta) = \theta_1^2 + \theta_2^2$ θ_2 $^{-1}$ (0.0) $^{-2}$ $^{-1}$ $_{0}$ $0 \\ \theta_2$ $\mathbf{2}$ 1 -2 -1 θ_{i} 2 _1 0 HERATION OF STEEPEST DESCENT given, 0⁽⁰⁾ - stout We want $Q^{(1)}, Q^{(2)}, ..., Q^{(K)}$ $e^{(\theta_{48})} = \theta_{48}$ $Q^{(K+1)} = Q^{(K)} - \alpha \nabla J(Q^{(K)})$ ' ~ ' - step Size - hyperpar - ameter let's understand behavior at Oth $\mathcal{C}\left(\boldsymbol{\theta}_{\mathbf{A}}\right) = \mathcal{C}\left(\boldsymbol{\theta}_{\mathbf{A}}\right) - \boldsymbol{\gamma} \Delta \mathcal{I}\left(\boldsymbol{\theta}_{\mathbf{A}}\right)$ At 0^{1} , we have $\nabla J(0^{1}) = 0$ $(\mathcal{H}(\theta_{\mathbf{x}+1}) = \mathcal{H}(\theta_{\mathbf{x}}) = \theta_{\mathbf{x}}$

•	(M) (140	1 1 1	ASSI	սաթղ		•	•		5	, °	۲۰۰۶ ۲۰	onc j.e.	2 —))	°d(4 ∇J	fferen	ntial ^a pose	ole, sible	· ·
	•	0	•	(014	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Þ	. (•	d i	١.0٧	•		• ‡	ŧ. s.	' co feips	. 1	too	۹۸ L	nch				long .con		
•	•	•		- 1	•	$ \rightarrow $. 0	SCI	get Ilates	1	5	•	٠	•	•	0 V. 1	nchin	t <u>s</u> 1.11m	•
•	600	L :	· 1	zind	، رکن	nffiu	ent	ly	Sma	l' ''	alph	٩.	that	ge	ts	You	thu	•	•
•	٠	0	٠	0	0	٥	٠	٠	-ta	.ster	it.	(bv	verge	evel.	° 2	٠	ø	٠	۰
	•	٠	٠	٠	•	•	٠	٠	•	٠	•	٠	•	٠	•	•	•	٠	٠
	٠	٥	۰	•	ø				٠						•	٠	•	٠	۰
	•	0	•	•	0		•		•		•			•	•	•	•	•	•
•	٠	ø		ø					۰							٠		٠	۰
Þ	٠	•	٠	٠	•	•	٠	•	٠	•	٠	•	٠	•	•	•	٠	٠	٠
•	٠	٠	٠	٠	٠	٠	۰	•	۰	•	٠	•	٠	٠	•	•	٠	٠	۰
•	٠	0	•	0	0	0	٠	•	٠	•	٠	•	٠	0	٠	٠	•	٠	٠
•	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	٠	•	•	•	•	•	•	٠	۰
•		0	٠	٠					٠							٠	•		•
	٠	•	٠	•	•	•	٠	٠	•	٠	٠	•	•	•	•	٠	٠	٠	٠
•			-					-	•										-

•	0	Lo	<u> </u>	-26	ENL	Ŀ	GUA	RAN	TG	TS .	•	•	•	•	0	•	•	0	•	•	•
0		•	0	Ĵ(6	9)	- 0)2+	02	•	•	•		isk	ω Γ			itees	rgeni Ca	n · h	اھ	•
•	•	fener	al	for	5 5	of	J(0	<u>b</u>)	•	•	•	•	•	•	•	•	•	olver		•	•
٠	L.	•	•	•	کا(0 ⁾ =	12	· 0 ^T ,	40-	+	bTO). <i>†</i>	Ċ	•	•	•	٠	ø	•	•	
•	• • N	- 2]	•	•	•	0		•	•	٠	•	•	¢	•	•	•	•	•	•	•	•
÷	٠	-	•	•	٠	.~ 0	٠	0	ۍ ۲	ГЛ (Д) (7.5	ient	→6 4 <u> 1</u>	J() O ((+	b	۰	٥	٠	٠	۰
•			U	•	•	0	•	· ·									Д.	TIO	· \`;c	•	•
٠	٠	٠	٠	٠	•	٠	•		5 UN	νL	•	•	•					J(O Anic			2X
•	0	•	•	•	•	0	•	•	•	0		AT		•	0	•	•	0	•	•	•
÷	0	٠	0	٠	٠	0	٠					ĄФ		٠	0	•	۰	٥	٠	٠	٠
•	0	•	•	•	0 (K-4		- 0							•	•	•	•	0	•	•	•
٠	٥						- (٠	o	٥	٠	٠	٠	٥	٠
•	0	•					—								0₽		•	e e	•	•	•
•	•	•	•	~ .(~ (FH)	ノ.	.=-	T	'	46	7	0(4)-	-01	(•	•	•	•	•	•	•
ø	ø	٠	٠	ک ۱	•	o	•		•	•		•	E)	o		٠	۰	•	•	۰
•	•	•	•	•	•	0	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
٥	۰	٠	•	•	٠	ø	•	•	٠	•	٠	•	٠	•	•	•	٥	٠	•	•	٠
٠	0	•	•	٠	٠	٠	٠	٠	•	٠	•	٠	٠	٠	٠	٠	٠	٠	•	٠	•

 $\varepsilon^{(k+1)} = \left[\cdots \right] \varepsilon^{(k)}$ happens to be <u>L1</u> -> guarantee convergence! Q. What governs the amount of "stratch" a matrix applies to a vector? -> The triteNUBMES 1 or the largest eigenvalues ⇒ the LARLEST R-V - Amox determines lonvergenal $\sqrt{2}$ $\sqrt{2}$ Convergence. Juaranteed E^(K+1) = [...] $\mathcal{Z}^{(K)}$ G(linear convergence [) $V_{01} = 0_1^2 + 0_2^2$ X < 1 - Converge $\propto = 1 - oscillate$ 2 > 1 - diverge

Q. How to choose starting point? Pradhi - 'bes" - reach same optima both are fixed lindy - "no" _ local / not global points of 6" rencher rentur 0 -27560 5040 2520 -40 θ_2 -20-2540 -6-5060 -75-80-100 -100-4 03 -8-10 $^{-4}$ $^{-2}$ -20 0 -10 --6. _8 -2 -4 θ_1

EN BOVIE TO NEWTON GRADIENT PESCENT _ O(1), ..., O(4) such that $\mathcal{O}_{\mathfrak{A}\mathcal{H}} = \mathcal{O}_{\mathfrak{A}} = \mathcal{O}_{\mathfrak{A}}$ what happens at global optima? $\Delta \Sigma(0_{\bullet}) = 0$ [DEA - If I have some f, how do find the roots of that function 0, such that f(0) = 0we want to find roots "iteratively" find solution as follows, Stanting from 0⁽⁰⁾ o(o) -> fit a tangent us my approximation to the function not of my tangent approximation Is the Next estimate