
RISC, CISC, and ISA Variations
CS 3410

Computer System Organization & Programming

[K. Bala, A. Bracy, E. Sirer, and H. Weatherspoon]

PollEV Question #1
Which is not considered part of the ISA?

A. That the processor is pipelined.
B. The number of inputs each instruction can have.
C. Each instruction is encoded in 32 bits.
D. Whether multiplication must be expressed as a series of add

instructions.

2

Presenter Notes
Presentation Notes
A

3

Presenter Notes
Presentation Notes

Do not modify the notes in this section to avoid tampering with the Poll Everywhere activity.
More info at polleverywhere.com/support

Which is not considered part of the ISA?
https://www.polleverywhere.com/multiple_choice_polls/9uQRaYO3mQvSuf1ezhwXh?state=opened&flow=Default&onscreen=persist

PollEV Question #1
Which is not considered part of the ISA?

A. That the processor is pipelined.
B. The number of inputs each instruction can have.
C. Each instruction is encoded in 32 bits.
D. Whether multiplication must be expressed as a series of add

instructions.

4

Presenter Notes
Presentation Notes
A

5

int x = 10;
x = 2 * x + 15;C

compiler

addi x5, x0, 10
slli x5, x5, 1
addi x5, x5, 15

RISC-V
assembly
language

00000000101000000000001010010011
00000000000100101001001010011111
00000000111100101000001010010011

RISC-V
machine
language

assembler

x0 = 0
x5 = x0 + 10
x5 = x5 * 2
x5 = x5 + 15

10 x0 x5 op = addi

EVERYTHING IS A NUMBER!
15 x5 x5 op = addi

Big Picture: How to Design Program a Processor
High Level
Languages

Instruction Set
Architecture (ISA)

Presenter Notes
Presentation Notes
32 bits, 4 bytes

What time is it?

6

int x = 10;
x = 2 * x + 15;C

compiler

addi x5, x0, 10
slli x5, x5, 1
addi x5, x5, 15

RISC-V
assembly
language

00000000101000000000001010010011
00000000000100101001001010011111
00000000111100101000001010010011

RISC-V
machine
language

assembler

x0 = 0

x5 = x0 + 10
x5 = x5 * 2
x5 = x5 + 15

10 x0 x5 op = addi

EVERYTHING IS A NUMBER!
15 x5 x5 op = addi

Big Picture: How to Design Program a Processor

Presenter Notes
Presentation Notes
32 bits, 4 bytes

What time is it?

Goals for Today
Instruction Set Architectures
• ISA Variations, and CISC vs RISC
• Peek inside some other ISAs:

• X86
• ARM

7

Presenter Notes
Presentation Notes
Time for Prelim1 Questions

Iron Law of Processor Performance
How to make a processor that runs programs faster?

Pipelining/Performance Lecture: tradeoff CPI and clock frequency
This lecture: incorporating instruction count into the equation

8

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

=
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

 ∗
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
 ∗

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

(CPI) Clock
Frequency

Instruction Set Architecture (ISA)
Different CPU architectures specify different instructions

Two classes of ISAs
• Reduced Instruction Set Computers (RISC)
 RISC-V, MIPS, IBM Power PC, Sun Sparc, Alpha
• Complex Instruction Set Computers (CISC)
 Intel x86, PDP-11, VAX

• Another ISA classification: Load/Store Architecture
• Data must be in registers to be operated on
 For example: array[x] = array[y] + array[z]
 1 add ? OR 2 loads, an add, and a store ?
• Keeps HW simple  many RISC ISAs are load/store

9

PollEV Question #2
What does it mean for an architecture to be called a load/store architecture?

(A) Load and Store instructions are supported by the ISA.

(B) Load and Store instructions can also perform arithmetic instructions on data
in memory.

(C) Loads & Stores are the primary means of reading and writing data in the ISA.

(D) Data must first be loaded into a register before it can be operated on.

(E) Every load must have an accompanying store at some later point in the
program.

10

PollEV Question #2
What does it mean for an architecture to be called a load/store architecture?

(A) Load and Store instructions are supported by the ISA.

(B) Load and Store instructions can also perform arithmetic instructions on data
in memory.

(C) Loads & Stores are the primary means of reading and writing data in the ISA.

(D) Data must first be loaded into a register before it can be operated on.

(E) Every load must have an accompanying store at some later point in the
program.

11

ISA Variations
ISA defines the permissible instructions

• RISC-V/MIPS: load/store, arithmetic, control flow, …
• ARMv7: similar to MIPS, but more shift, memory, &

conditional ops
• ARMv8 (64-bit): even closer to MIPS, no conditional ops
• VAX: arithmetic on memory or registers, strings, polynomial

evaluation, stacks/queues, …
• Cray: vector operations, …
• x86: a little of everything

12

Presenter Notes
Presentation Notes
Bring out competing goals

13

Accumulators
• Early computers had one register!

• Two registers short of a MIPS instruction!
• Requires memory-based addressing mode

• Example: add 200 // ACC = ACC + Mem[200]
• Add the accumulator to the word in memory at address 200
• Place the sum back in the accumulator

Brief Historical Perspective on ISAs

EDSAC (Electronic Delay Storage
Automatic Calculator) in 1949

Intel 8008 in 1972

Presenter Notes
Presentation Notes
Accumulator: one register (http://en.wikipedia.org/wiki/Electronic_Delay_Storage_Automatic_Calculator)
The accumulator is both the source operand and the destination for the operation. The second operand comes from memory.

EDSAC (Electronic Delay Storage Automatic Calculator) in 1949. EDSAC was the second electronic digital stored-program computer to go into regular service. The first being the EDVAC (Electronic Discrete Variable Automatic Computer), which, unlike its predecessor the ENIAC, it was binary rather than decimal, and was a stored program computer. The EDVAC had a memory capacity of 1000 44-byte words (i.e. 5.5 kB today). EDVAC's addition time was 864 microseconds (about 1.16 kHz) and its multiplication time was 2900 microseconds (about 0.38 kHz). The computer had almost 6,000 vacuum tubes and 12,000 diodes, and consumed 56 kW of power. It covered 490 ft² (45.5 m²) of floor space and weighed 17,300 lb (7,850 kg). The full complement of operating personnel was thirty people per eight-hour shift.

EDSAC details: The instructions available were: add, subtract, multiply, collate,[10] shift left, shift right, load multiplier register, store (and optionally clear) accumulator, conditional skip, read input tape, print character, round accumulator, no-op and stop. There was no division instruction (though a number of division subroutines were available) and no way to directly load a number into the accumulator (a “store and zero accumulator” instruction followed by an “add” instruction were necessary for this).

Brief Historical Perspective on ISAs
Next step: More Registers

• Dedicated registers
• separate accumulators for mult/div instructions

• General-purpose registers
• Registers can be used for any purpose

• RISC-V, MIPS, ARM, x86

• Register-memory architectures
• One operand may be in memory (e.g. accumulators)

• x86 (i.e. 80386 processors)

• Register-register architectures (aka load-store)
• All operands must be in registers

• RISC-V, MIPS, ARM
14

Presenter Notes
Presentation Notes
The generalization of the dedicated-register architecture allows all the registers to be used for any purpose, hence the name general-purpose register. MIPS is an example of a general-purpose register architecture. This style of instruction set may be further divided into those that allow one operand to be in memory (as found in accumulator architectures), called a register-memory architecture, and those that demand that operands always be in registers, called either a load-store or a register-register architecture.

The 80386 is Intel’s attempt to transform the 8086 into a general-purpose register-memory instruction set. Perhaps the best-known register-memory instruction set is the IBM 360 architecture, first announced in 1964. This instruction set is still at the core of IBM’s mainframe computers—responsible for a large part of the business of the largest computer company in the world. Register-memory architectures were the most popular in the 1960s and the first half of the 1970s.

Digital Equipment Corporation’s VAX architecture took memory operands one step further in 1977. It allowed an instruction to use any combination of registers and memory operands. A style of architecture in which all operands can be in memory is called memory-memory. (In truth the VAX instruction set, like almost all other instruction sets since the IBM 360, is a hybrid, since it also has general-purpose registers.)

ISAs are a product of current technology

15

• # of available registers plays huge role in ISA design
Machine # General Purpose Registers Architectural Sty le Year

EDSAC 1 Accumulator 1949

IBM 701 1 Accumulator 1953

CDC 6600 8 Load-Store 1963

IBM 360 18 Register-Memory 1964

DEC PDP-8 1 Accumulator 1965

DEC PDP-11 8 Register-Memory 1970

Intel 8008 1 Accumulator 1972

Motorola 6800 2 Accumulator 1974

DEC VAX 16 Register-Memory, Memory-Memory 1977

Intel 8086 1 Extended Accumulator 1978

Motorola 6800 16 Register-Memory 1980

Intel 80386 8 Register-Memory 1985

ARM 16 Load-Store 1985

MIPS 32 Load-Store 1985

HP PA-RISC 32 Load-Store 1986

SPARC 32 Load-Store 1987

PowerPC 32 Load-Store 1992

DEC Alpha 32 Load-Store 1992

HP/Intel IA-64 128 Load-Store 2001

AMD64 (EMT64) 16 Register-Memory 2003

Presenter Notes
Presentation Notes
The generalization of the dedicated-register architecture allows all the registers to be used for any purpose, hence the name general-purpose register. MIPS is an example of a general-purpose register architecture. This style of instruction set may be further divided into those that allow one operand to be in memory (as found in accumulator architectures), called a register-memory architecture, and those that demand that operands always be in registers, called either a load-store or a register-register architecture.

The 80386 is Intel’s attempt to transform the 8086 into a general-purpose register-memory instruction set. Perhaps the best-known register-memory instruction set is the IBM 360 architecture, first announced in 1964. This instruction set is still at the core of IBM’s mainframe computers—responsible for a large part of the business of the largest computer company in the world. Register-memory architectures were the most popular in the 1960s and the first half of the 1970s.

Digital Equipment Corporation’s VAX architecture took memory operands one step further in 1977. It allowed an instruction to use any combination of registers and memory operands. A style of architecture in which all operands can be in memory is called memory-memory. (In truth the VAX instruction set, like almost all other instruction sets since the IBM 360, is a hybrid, since it also has general-purpose registers.)

Digital Equipment Corporation’s VAX architecture took memory operands one step further in 1977. It allowed an instruction to use any combination of registers and memory operands. A style of architecture in which all operands can be in memory is called memory-memory. (In truth the VAX instruction set, like almost all other instruction sets since the IBM 360, is a hybrid, since it also has general-purpose registers.)

In the Beginning…
People programmed in assembly and machine code!
• Needed as many addressing modes as possible
• Memory was (and still is) slow

CPUs had relatively few registers
• Register’s were more “expensive” than external mem
• Large number of registers requires many bits to index

Memories were small
• Encouraged highly encoded microcodes as instructions
• Variable length instructions, load/store, conditions, etc

16

Takeaway
The number of available registers greatly influenced the instruction set
architecture (ISA)

Complex Instruction Set Computers necessary but were very complex
• Necessary to reduce the number of instructions required to fit a program into memory.
• However, also greatly increased the complexity of the ISA as well.

17

Next Goal
How do we reduce the complexity of the ISA while
maintaining or increasing performance?

18

Reduced Instruction Set Computer (RISC)
John Cock
• IBM 801, 1980 (started in 1975)

• Name 801 came from the building that housed the project
• Idea: Can make a very small and very fast core
• Known as “the father of RISC Architecture”
• Turing Award and National Medal of Science

19

Reduced Instruction Set Computer (RISC)
Dave Patterson
• RISC Project, 1982

• UC Berkeley

• RISC-I: ½ transistors & 3x faster
• Influences: Sun SPARC, namesake

of industry

John L. Hennessy
• MIPS, 1981

• Stanford

• Simple, full pipeline

• Influences: MIPS computer system,
PlayStation, Nintendo

20

Presenter Notes
Presentation Notes
Put picture of advisor and advisors advisor

RISC vs. CISC
RISC-V = Reduced Instruction Set Computer (RlSC)

• ≈ 200 instructions, 32 bits each, 4 formats
• all operands in registers

• almost all are 32 bits each

• ≈ 1 addressing mode: Mem[reg + imm]

x86 = Complex Instruction Set Computer (ClSC)
• > 1000 insns, 1-15 bytes each (dozens of add insns)
• operands in dedicated registers, general purpose registers, memory, on stack, …

• can be 1, 2, 4, 8 bytes, signed or unsigned

• 10s of addressing modes
• e.g. Mem[segment + reg + reg*scale + offset]

22

Presenter Notes
Presentation Notes
DEC PDP-8 has about 8 insructions

The RISC Tenets
RISC
• Single-cycle execution
• Hardwired control

• Load/store architecture
• Few memory addressing modes
• Fixed-length insn format

• Reliance on compiler optimizations
• Many registers (compilers are better

at using them)

CISC
• many multicycle operations
• microcoded multi-cycle operations
• register-mem and mem-mem
• many modes

• many formats and lengths

• hand assemble to get good
performance

• few registers

23

Presenter Notes
Presentation Notes
Need a segway
Make sure to define and discuss ISA and ARM

What happens when the common case is slow?
Can we add some complexity in the ISA for a speedup?

24

RISC Philosophy
Regularity & simplicity
Leaner means faster
Optimize common case

Energy efficiency
Embedded Systems
Phones/Tablets

RISC vs CISC
CISC Rebuttal
Compilers can be smart
Transistors are plentiful
Legacy is important
Code size counts
Micro-code!
 “RISC Inside”

Desktops/Servers

Presenter Notes
Presentation Notes
RISC:
regularity means no mem-to-mem, few addressing modes… thus load-store
regularity means uniform instruction size… sizeof(common) = sizeof(rare)
lean means fewer, more general instructions… thus bigger programs, more instructions
common case means measurement
CISC:
Compilers can be smart
Transistors are plentiful
Legacy is important
Code size counts
Micro-code!

25

ARMDroid vs WinTel
Android OS on ARM
processor

Windows OS on
Intel (x86) processor

26

ARMDroid vs WinTel vs MacBook
Android OS on ARM
processor

Windows OS on
Intel (x86) processor

Mac OS X on M*
processor

PollEV Question #3
What is one advantage of a CISC ISA?

A. It naturally supports a faster clock.
B. Instructions are easier to decode.
C. The static footprint of the code will be smaller.
D. The code is easier for a compiler to optimize.
E. You have a lot of registers to use.

27

Presenter Notes
Presentation Notes
C

28

Presenter Notes
Presentation Notes

Do not modify the notes in this section to avoid tampering with the Poll Everywhere activity.
More info at polleverywhere.com/support

What is one advantage of a CISC ISA?
https://www.polleverywhere.com/multiple_choice_polls/ZmVVdjHDjUtgzX3ReOsDD?state=opened&flow=Default&onscreen=persist

PollEV Question #3
What is one advantage of a CISC ISA?

A. It naturally supports a faster clock.
B. Instructions are easier to decode.
C. The static footprint of the code will be smaller.
D. The code is easier for a compiler to optimize.
E. You have a lot of registers to use.

29

Presenter Notes
Presentation Notes
C

Takeaway
The number of available registers greatly influenced the instruction set
architecture (ISA)

Complex Instruction Set Computers were very complex
- Necessary to reduce the number of instructions required to fit a program into
memory.
- However, also greatly increased the complexity of the ISA as well.

Back in the day… CISC was necessary because everybody programmed in
assembly and machine code! Today, CISC ISA’s are still dominant due to the
prevalence of x86 ISA processors. However, RISC ISA’s today such as ARM have an
ever increasing market share (of our everyday life!).
ARM borrows a bit from both RISC and CISC.

30

Next Goal
How does RISC-V and ARM compare to each other?

31

32

RISC-V instructions
32 bits long and 4 possible formats:

R-type

I-type

S-type

U-type

funct7 rs2 rs1 funct3 rd op
7 bits 5 bits 5 bits 3 bits 5 bits 7 bits

imm rs1 funct3 rd op
12 bits 5 bits 3 bits 5 bits 7 bits

imm rs2 rs1 funct3 imm op
7 bits 5 bits 5 bits 3 bits 5 bits 7 bits

imm rd op
20 bits 5 bits 7 bits

Presenter Notes
Presentation Notes
See Figure 2.18 in the book for RISC-V instruction encoding. Also, see the one page RISC-V Reference Data sheet and reference from 4750: https://www.csl.cornell.edu/courses/ece4750/handouts/ece4750-tinyrv-isa.txt

R-type – ADD, SUB, SLL, XOR, SRL, OR, AND,
 – LR.W, SC.W, LR.D, SC.D
I-type – ADDI, SLLI, XORI, SRLI, SRAI, ORI, ANDI
 – LB, LH, LW, LD, LBU, LHU, LWU
 – JALR
S-type – SB, SH, SW, SD
SB-type – BEQ, BNE, BLT, BGE, BLTU, BGEU
U-type – LUI
UJ-type - JAL

All ARMv7 instructions are 32 bits long, 3 formats

R-type

I-type

J-type

ARMv7 instruction formats

33

opx op rs rd opx rt
4 bits 8 bits 4 bits 4 bits 8 bits 4 bits

opx op rs rd immediate
4 bits 8 bits 4 bits 4 bits 12 bits

opx op immediate (target address)

4 bits 4 bits 24 bits

Presenter Notes
Presentation Notes
9 addressing modes

Bring of of a contrast to MIPS and ARM
Make type of instruction same color
Add a Take away slide

while(i != j) {
 if (i > j)
 i -= j;
 else
 j -= i;
 }
Loop: CMP Ri, Rj // set condition registers
 // Example: 4, 3  CR =
0101
 // 5,5  CR = 1000
 SUBGT Ri, Ri, Rj // i = i-j only if CR &
0001 != 0
 SUBLE Rj, Rj, Ri // j = j-i only if CR &
1010 != 0000
 BNE loop // if "NE" (not equal),
then loop

ARMv7 Conditional Instructions

34

ARM: avoids delays with
conditional instructions

New: 1-bit condition
registers (CR)

= ≠ < >

Control Independence!

Presenter Notes
Presentation Notes
In ARM assembly, the loop avoids the branches around the then and else clauses. Note that if Ri and Rj are equal then neither of the SUB instructions will be executed, optimizing out the need for a conditional branch to implement the while check at the top of the loop, for example had SUBLE (less than or equal) been used.

ARMv7: Other Cool operations
Shift one register (e.g., Rc) any amount
Add to another register (e.g., Rb)
Store result in a different register (e.g. Ra)

ADD Ra, Rb, Rc LSL #4
Ra = Rb + Rc << 4
Ra = Rb + Rc x 16

35

ARMv7 Instruction Set Architecture
ARMv7 instructions are 32 bits long, 3 formats
Reduced Instruction Set Computer (RISC) properties

• Only Load/Store instructions access memory
• Instructions operate on operands in processor registers
• 16 registers

Complex Instruction Set Computer (CISC) properties
• Autoincrement, autodecrement, PC-relative addressing
• Conditional execution
• Multiple words can be accessed from memory with a single instruction (SIMD: single instr

multiple data)

36

ARMv8 (64-bit) Instruction Set Architecture
ARMv8 instructions are 64 bits long, 3 formats

Reduced Instruction Set Computer (RISC) properties
• Only Load/Store instructions access memory
• Instructions operate on operands in processor registers
• 32 registers and r0 is always 0

Complex Instruction Set Computer (CISC) properties
• Conditional execution
• Multiple words can be accessed from memory with a single instruction

(SIMD: single instr multiple data)

37

ISA Takeaways
The number of available registers greatly influenced the instruction set architecture (ISA)

Complex Instruction Set Computers were very complex

+ Small # of insns necessary to fit program into memory.

- greatly increased the complexity of the ISA as well.

Back in the day… CISC was necessary because everybody programmed in assembly and
machine code! Today, CISC ISA’s are still dominant due to the prevalence of x86 ISA
processors. However, RISC ISA’s today such as ARM have an ever increasing market share
(of our everyday life!).

ARM borrows a bit from both RISC and CISC.

38

Presenter Notes
Presentation Notes
Grammar

Need an activity for the first part, iclicker or other activity. Same for second part.

PollEV Answers
1. A (That the processor is pipelined.)
2. D (Data must first be loaded into a register before it can be

operated on.)
3. C (The static footprint of the code will be smaller.)

39

	RISC, CISC, and ISA Variations
	PollEV Question #1
	Poll Everywhere multiple choice poll activity
Activity Title: Which is not considered part of the ISA?
Slide 3
	PollEV Question #1
	Big Picture: How to Design Program a Processor�
	Big Picture: How to Design Program a Processor�
	Goals for Today
	Iron Law of Processor Performance
	Instruction Set Architecture (ISA)
	PollEV Question #2
	PollEV Question #2
	ISA Variations
	Brief Historical Perspective on ISAs
	Brief Historical Perspective on ISAs
	ISAs are a product of current technology�
	In the Beginning…
	Takeaway
	Next Goal
	Reduced Instruction Set Computer (RISC)
	Reduced Instruction Set Computer (RISC)
	RISC vs. CISC
	The RISC Tenets
	RISC vs CISC
	ARMDroid vs WinTel
	ARMDroid vs WinTel vs MacBook
	PollEV Question #3
	Poll Everywhere multiple choice poll activity
Activity Title: What is one advantage of a CISC ISA?
Slide 27
	PollEV Question #3
	Takeaway
	Next Goal
	RISC-V instructions
	ARMv7 instruction formats
	ARMv7 Conditional Instructions
	ARMv7: Other Cool operations
	ARMv7 Instruction Set Architecture
	ARMv8 (64-bit) Instruction Set Architecture
	ISA Takeaways
	PollEV Answers

