
Compilation –
Assemblers, Linkers, & Loaders
CS 3410: Computer System Organization and Programming

[K. Bala, A. Bracy, E. Sirer, and H. Weatherspoon]

Compiling – From C to an Executable

• People saying ”compile” usually mean: compile + assemble + link
• It’s what happens when you run:

gcc –o prog prog.c helper.c

• Last Step = “Load” program into memory (i.e., running it)

2

prog.c prog.s prog.o prog

compile assemble link

Compiling – From C to an Executable

• Compiler: Source to Assembly
• Assembler: Assembly to Object File
• Linker: Object Files to Executable
• Loader: Executable into Memory

MEMORY

loader

prog.s prog.o prog

helper.s helper.o

prog.c

helper.c

printf.o

compile assemble
link

3

Why The Gory Detail?
• Goal for the Course

• Understand, from “top to bottom” what happens when your
program runs on a computer

• Debug errors you will see as a programmer
• Building low level code
• Making builds ”portable”

• Efficiency of Builds
• What tradeoffs you can make while compiling/linking to save on:

• Space, compilation time, program efficiency

4

Working Example – prog.c

#include <stdio.h>
#include “helper.h”

int n = 5;

int main() {
 int i = sum(n, a);
 int j = inc(i);
 printf("%d+1 = %d\n",i,j);
}

extern int a;
int inc(int n);
int sum(int i, int j);

int a = 3;
int inc(int n) { return n+1; }
int sum(int i, int j) { return i + j ; }

helper.h

helper.c

prog.c

5

Compiler
• Input: *.c

• Source Code
• Headers (function & global variable definitions)

• Output: *.s
• Target Architecture

(e.g., RISC-V, x86_64)
• Assembly Instructions

(not yet machine code)

(subject of the calling conventions lectures)

prog.c

prog.s

gcc –S prog.c

return n+1;

addi a0, a0, 1

6

Compiling – prog.s contents
• Metadata

• filename, debug symbols

• Memory layout
• Section, alignment

• External References
• .comm a, 4, 4 (common symbol a)

• Constants & Function Bodies
• Still references global and external variable

names

(you don’t need to memorize these –just
get a feel for what’s in the assembly file)

.file “prog.c”

.align 2

.globl main

.type main, @function

main:
 addi sp, sp, -32
 lui a5, %hi(n)
 …
 .globl n
 …
n:
 .word 5
 .section .rodata
 .align 3
.LC0:
 .string “%d+1 = %d\n”
 .text
 .align 2
…

7

Compiling – Procedure
• Each file compiled separately

• (so we would also produce “helper.s” in our previous example)

• Optimizations
• Flags: -O0, -O1, -O2, -O3 (none to all)
• Dead code elimination, constant folding, loop unrolling, etc.
• Some rarely (if ever) applied without programmer hints

(function inlining & loop unrolling)
• List of gcc’s optimiztions - can also flag individual opts
• Most are local optimizations (i.e., functions are optimized individually)

• Take 4120 if you want to really really know how compilers work

gcc –O2 –S prog.c

8

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

Optimization Tradeoffs • Certain optimizations only executed
when given programmer hints

• E.g., function inlining
• Replace a function call by copying

the body of the function you’re
calling into your body

extern int a;
int inc(int n);
int sum(int i, int j) {
 return i + j;
};

helper.h

#include <stdio.h>
#include “helper.h”

int n = 5;

int main() {
 int i = sum(n,a);
 int j = inc(i);
 printf("%d+1 = %d\n",i,j);
}

prog.c

9

http://xkcd.com/303/

10

Compiling – From C to an Executable

• People saying ”compile” usually mean: compile + assemble + link
• It’s what happens when you run:

gcc –o prog prog.c

• Last Step = “Load” program into memory (i.e., running it)

prog.c prog.s prog.o prog

compile assemble link

11

Assembler
• Input: *.s

• Program code -- assembly
instructions, pseudo-
instructions

• Program data
• Alignment, memory & type

metadata (layout directives)

• Output: *.o
• “Object File”
• Operating System-Specific
• Binary machine code

00100000000001010000000000001010
00000000000001010010100001000000
00100000101001010000000000001111

addi x5, x0, 10
muli x5, x5, 2
addi x5, x5, 15

as –o prog.o prog.s

12

Assembler
• Need to translate pseudo-instructions to real

instructions
• LI (“ load immediate”) -> LUI + ADDI, or just ADDI
• MV (“move”) -> ADD
• Other common translations in RISC-V handbook

• Symbols & References
• Similar information to the Assembly file
• Global labels – externally “exported” symbols

(global variables, exported functions)
• Local labels – only used within the object file

• Present as metadata, but also removed from
assembly instructions

add x4, x2, x0 #but in binary

mv x4, x2

bne x1, x2, 12
…
add x2, x2, x4

bne x1, x2, L1
…
L1: add x2, x2, x4

13

What’s in an Object File -- Binary Format
• Header

• Formatting information, size and position of segments

• Text Segment
• Instructions

• Data Segment
• Constants / other static data

• Debugging Information
• Line number / variable name -> instruction / memory mapping

• Symbol Table
• Global and Local References

14

If you ever do need to read an object file

• Probably only need to do this
when working on embedded
systems or when you’re writing
“ inline assembly” or buffer
overflow assignment

objdump –D prog.o

prog.o: file format elf32-littleriscv

Disassembly of section .text:

00000000 <main>:
 0: fe010113 addi sp,sp,-32
 4: 00113c23 sd ra, 24(sp)
 …
Disassembly of section .sdata:
 …

15

Application Binary Interface (ABI)
• Specific to Operating System

• Describes how to load the program into memory
• Describes how to run the code
• Describes which functions/variables it exports

• Unix:
• Executable and Linkable Format (ELF)
• Common Object File Format (COFF)

• Windows:
• Portable Executable (PE)

• Mac:
• Mach-O

API : Source
Code

ABI Machine
Code:

16

Compiling – From C to an Executable

• People saying ”compile” usually mean: compile + assemble + link
• It’s what happens when you run:

gcc –o prog prog.c

• Last Step = “Load” program into memory (i.e., running it)

prog.c prog.s prog.o prog

compile linkassemble

17

Compiling – From C to an Executable

• Separate compilation units (files)
• Change in only 1 file? Only recompile 1 file (unless this changed an interface – e.g.,

the argument types to a function)
• Link object files together into a single executable

prog.c prog.s prog.o prog

helper.c helper.s helper.o

compile assemble
link

18

Linker
• Combine object files into an executable
• Time to resolve all symbols!

prog.o

prog

helper.o

ld –o prog prog.o helper.o

prog.c:(.text+0x44): undefined reference to `printf’

ld –o prog prog.o helper.o -lc

Pro Tip!

Your program needs to
be linked against the
“standard library” if

using ‘built-ins’

19

Linker
• Combine object files into an executable
• Time to resolve all symbols!

• Each object file “ imagines” it has its own main
memory array (a.k.a. address space)

• Linking relocates code & data
• Merge text & data sections
• Replace final set of labels with offsets

• Record top-level entry point (“main”)
• Format still OS specific (conform to the ABI)

prog.o

prog

helper.o

ld –o prog prog.o helper.o -lc

20

Linker
• Combine object files into an executable
• Time to resolve all symbols!

• Each object file “ imagines” it has its own main
memory array (a.k.a. address space)

• Linking relocates code & data
• Merge text & data sections
• Replace final set of labels with offsets

• Record top-level entry point (“main”)
• Format still OS specific (conform to the ABI)

prog.o

prog

helper.o

ld –o prog prog.o helper.o -lc

Why is the RISC-V JAL instruction
defined to be PC-Relative?

Mnemonic Description
JAL rd, offset R[rd] = PC+4;

PC=PC + imm << 1

21

Position-Independent Code
• If you can’t move code or

data around, it’s difficult to
link against it

• When instructions use
PC-Relative addresses, it’s
much easier to move code &
data around.

Why are RISC-V instructions defined to be
PC-Relative?

Mnemonic Description
JAL rd, offset R[rd] = PC+4;

PC=PC + imm << 1
AUIPC rd, offset R[rd] = PC + imm << 12;

22

Static Libraries
• A collection of object f iles (also called an archive)
• Can make your own (e.g., put helper.o in an archive)
• Only link the objects we need in our executable
• A bunch of standard ones come with your OS (e.g., libc)

• Typically each object file ~ one function or one family of functions
• printf.o, read.o, exit.o, rand.o
• Specific to OS – systemcall heav y code

23

System Calls
• ISAs do not have instructions to

• Write to files
• Draw on the screen
• Communicate over the network interface
• Start a new process

• These are properties of the OS +
Peripheral Hardware

• OS + Firmware are responsible for this
code (usually involves R/W to special
memory addresses)

• syscalls are ISA instructions that
transfer control to OS so it can execute
these functions

SandyBridge Motherboard, 2011
http://news.softpedia.comTake CS 4410 for a

boatload more info!

24

Compiling – From C to an Executable
The Last Step

• OS “Loads” program into memory from disk
• Called the loader

• Initialize registers, stack, “main” arguments
• Jumps to entry point

MEMORY

loader

prog.s prog.o prog

helper.s helper.o

prog.c

helper.c

printf.o

compile assemble
link

./prog

rv qemu prog 25

Questions?

• We’re touching on Operating Systems, Compilers, and Memory
Layout details – so we’re eliding a lot of the subtlety

• Are there details about this process you’re curious about?

prog.c prog.s prog.o prog

compile assemble
link

26

Shared Libraries – Optimizations
• libc is used by almost every program

• Don’t want copies in every executable
• Can assume everyone uses it

(common case!)

• Static Loading:
• Loader does the linking right before

starting the program
• Only 1 copy of shared library on disk
• Can update or customize library

without re-linking

Disk

proghelper.oprog.o

libc.alibc.alibc.alibc.a

hello_world
DATA

MEMORY

TEXT

27

Shared Libraries – Optimizations
• libc is used by almost every program

• Don’t want copies in every executable
• Can assume everyone uses

• Static Loading:
• Loader does the linking right before

starting the program
• Only 1 copy of shared library on disk
• Can update or customize library without re-

linking
• Can pick f ixed parts of the address

space to store their code & data –
no matter who calls them!
(no relocation necessary)

• These files look like: libgcc.so

Disk

proghelper.oprog.o

libc.alibc.alibc.alibc.a

hello_world
DATA

MEMORY

TEXT

printf DATA

printf TEXT

28

Another Linking Option
• Static Linking
• Big Executables

(and TEXT segment)
• Some loading cost

(for shared libs)
• Fewer (usually no) compatibility

problems
• No runtime or load-time

updates

• Dynamic Linking
• Use Virtual Memory to link code

at runtime

• Small executable (and TEXT
segment if code not called)

• Very little load time – some
runtime cost

• Potential compatibility issues
(not discovered until runtime)

• Can dynamically update code

29

Another Linking Option
• Static Linking
• Big Executables

(and TEXT segment)
• Some loading cost

(for shared libs)
• Fewer (usually no) compatibility

problems
• No runtime or load-time

updates

• Dynamic Linking
• Use Virtual Memory to link code

at runtime

• Small executable (and TEXT
segment if code not called)

• Very little load time – some
runtime cost

• Potential compatibility issues
(not discovered until runtime)

• Can dynamically update code

We’ll talk about
VIRTUAL MEMORY in

a few weeks.
It provides the illusion

that every program
gets ALL THE
MEMORY!!!

30

Why The Gory Detail?
• Goal for the Course

• Understand, from “top to bottom” what happens when your
program runs on a computer

• Debug errors you will see as a programmer
• Building low level code
• Making builds ”portable”

• Efficiency of Builds
• What tradeoffs you can make while compiling/linking to save on:

• Space, compilation time, program efficiency

31

Compiling – From C to an Executable

• Compiler: Source to Assembly
• Assembler: Assembly to Object File
• Linker: Object Files to Executable
• Loader: Executable into Memory

MEMORY

loader

prog.s prog.o prog

helper.s helper.o

prog.c

helper.c

printf.o

compile assemble
link

32

	Compilation – �Assemblers, Linkers, & Loaders
	Compiling – From C to an Executable
	Compiling – From C to an Executable
	Why The Gory Detail?
	Working Example – prog.c
	Compiler
	Compiling – prog.s contents
	Compiling – Procedure
	Optimization Tradeoffs
	Slide Number 10
	Compiling – From C to an Executable
	Assembler
	Assembler
	What’s in an Object File -- Binary Format
	If you ever do need to read an object file
	Application Binary Interface (ABI)
	Compiling – From C to an Executable
	Compiling – From C to an Executable
	Linker
	Linker
	Linker
	Position-Independent Code
	Static Libraries
	System Calls
	Compiling – From C to an Executable�The Last Step
	Questions?
	Shared Libraries – Optimizations
	Shared Libraries – Optimizations
	Another Linking Option
	Another Linking Option
	Why The Gory Detail?
	Compiling – From C to an Executable

