Compilation —
Assemblers, Linkers, & Loaders

CS 3410: Computer System Organization and Programming

Cornell Bowers C1S
Computer Science

Ss= | Cornell Bowers CIS

) Computer Science [K. Bala, A. Bracy, E. Sirer, and H. Weatherspoon]

Compiling — From G to an Executable

compile assemble link

* People saying "compile” usually mean: compile + cssemble + link
* ['s what happens when you run:
gcc -0 prog prog.c helper.c

* Last Step = “Load” program into memory (i.e., running it)

Ge=t | Comnell Bowers CIS
“ | Computer Science

Compiling — From G to an Executable

Drintf.o

| link
compile assemble
A 4
MEMORY

« Compiler: Source to Assembly

* Assembler: Assembly to Object File
* Linker: Object Files to Executable

* Loader: Executable into Memory

Ge=t | Comnell Bowers CIS
¢ | Computer Science

Why The Gory Detail?

e Goal for the Course

* Understand, from “top to bottom” what happens when your
Drogram runs on a computer

* Debug errors you will see as a programmer

* Building low level code
* Making builds "portable”

e Efficiency of Builds

* What tradeoffs you can make while compiling/linking to save on:
* Space, compilation time, program efficiency

| Cornell Bowers CIS
w2 | Computer Science

Working Example — prog.c

prog.c helper.h
extern int a;
<stdio.h> int inc(int n);
“helper.h” int sum(int i, int j);

it n = >; helper.c

int main() { int a = 3;

int i = sum(n, a); int inc(int n) { return n+l; }
int j = inc(i); int sum(int i, int j) { return 1 + j ; }
printf("%d+1 = %d\n",1i,7j);

¥

Cornell Bowers GIS
Computer Science

UN,
&> Y
&
4 2
S\
S %)
Q8 A2

Compiler

* [nput: ".c
* Source Code
» Headers (function & global variable definitions)

e Qutput: ™.s

» Target Architecture
(e.g., RISC-V, x86_64)

* Assembly Instructions
(not yet machine code)

(subject of the calling conventions lectures)

Cornell Bowers CIS
Computer Science

&“umy%

O

& 2)

SN
S %)
QEp A

return n+l;

v

addi a@, a0, 1

prog.c

Compiling — prog.s contents

.file “prog.c”
* Metadata .align 2

| .globl maj
e filename, debug symbols f oPs e @functi
.type main, unction

* Memory layout

* Section, alignment main:

addi sp, sp, -32
External References lui a5, %hi(n)

e .comm a, 4,4 (common symbol a)

.globl n

» Constants & Function Bodies
* Still references global and external variable | ™
names .word 5
. . .section .rodata
(vou don’t need to memorize these —just .align 3

get a feel for what’s in the assembly file) | -Lce:
.string “%d+1 = %d\n”

.text

Cornell Bowers CIS .align 2
Computer Science

Compiling — Procedure

« Each file compiled separately
* (sowe would also produce “helper.s” in our previous example)

* Optimizations
* Flags: -00, -01, -02, -03 (none to all)
* Dead code elimination, constant folding, loop unrolling, etc.

» Some rarely (it ever) applied without programmer hints
(function inlining & loop unrolling)

e List of gcc’s optimiztions - can also flag individual opts
« Most are local optimizations (i.e., functions are optimized individually)

e Take 4120 if you want to really really know how compilers work

gcc -02 -S prog.c

| Cornell Bowers CIS
w2 | Computer Science

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

Optimization Tradeoffs

* Certain optimizations only executed
when given programmer hints

prog.c * E.g., function inlining

* Replace afunction call by copying
the body of the function you're
calling into your body

<stdio.h>
“helper.h”

int n = 5;
’ helper.h

extern int a;
int inc(int n);

int 1 = sum(n,a);) . 1 .
; . . : intsum(int i dnt) {
int j = inc(i); ; > —3
printf("%d+1 = %d\n",i,3); return 1 + 3;

) ¥

int main() {

Cornell Bowers GIS
Computer Science

UN,
&> Y
&
4 2)
NG
S %)
Q8 A2

Optimization Tradeoffs

* Certain optimizations only executed
when given programmer hints

prog.c * E.g., function inlining

* Replace afunction call by copying
the body of the function you're
calling into your body

<stdio.h>
“helper.h”

int n = 5;
’ helper.h

extern int a;
int inc(int n);
inls . :

int main() {
int 1 = n + a;
int j = inc(1i);
printf("%d+1 = %d\n",1i,7);) s
})

int j) {

return 1 + j;

Cornell Bowers GIS
Computer Science

UN,
&> Y
&
4 2)
NG
S %)
Q8 A2

T

&

§ 2)

SN
S %)
Qb A

Optimization Tradeoffs — Function Inlining

prog.c

<stdio.h>
“helper.h”

int n = 5;

int main() {
int 1 = n + a;
int j = inc(1i);
printf("%d+1 = %d\n",1i,7);
}

| Cornell Bowers CIS
Computer Science

What are possible side-effrects of inlining?
A. The static code size could decrease.
. Thestatic code size could increase.
. The code could become easier to optimize.
. The code could be slower.
There will be fewer data memory accesses.

helper.h

extern int a;
int inc(int n);

return 1 + j;

11

Presenter Notes
Presentation Notes
Correct Answers: all of them – ask students to give reasons

Q.

What are possible side-effects of inlining?

@ The static code size could decrease.

- 19%
@ The static code size could increase.
D /-
@ The code could become easier to optimize.
S 0%
@ The code could be slower.
—] 9%
@ There will be fewer data memory accesses.
- 18%
Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..

| VUIIIIJ“ WVI wviIvIIVVY

Presenter Notes
Presentation Notes

Do not modify the notes in this section to avoid tampering with the Poll Everywhere activity.
More info at polleverywhere.com/support

What are possible side-effects of inlining?
https://www.polleverywhere.com/multiple_choice_polls/YVLIVqXtPZHbbWECfy2HF?state=opened&flow=Default&onscreen=persist

Other Optimization Tradeoffs o
Which of the following is true?

A. We could also choose toinlineinc

prog.c B. We could replace n with a constantin
“int 1 = n + a”

, C. Wecould replace a with a constantin
<Std10.h> “int i = nNn + a”

“helper.h” D. B&C
E. None

int n = 5;
’ helper.h

extern int a;
int inc(int n);
inline int sum(int i, int j) {

int main() {
int 1 = n + a;
int j = inc(i); . .
printf("%d+1 = %d\n",i,j); N return 1 + J;
} ;

Cornell Bowers GIS 13
Computer Science

&\‘\,umyq

&

§ 2)

SN
S %)
Qb A

@-.

Which of the following is true?

We could also choose to inline inc

N 21%
@ We could replace n with a constant in “inti=n+a”

T 23%
We could replace a with a constant in“inti=n+a”

G 12%

B&C
gl a3

None
2%

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..

| \IUIIIIJ“ WVI wviIvIIVVY

Presenter Notes
Presentation Notes

Do not modify the notes in this section to avoid tampering with the Poll Everywhere activity.
More info at polleverywhere.com/support

Which of the following is true?
https://www.polleverywhere.com/multiple_choice_polls/ZKiZy8rnoUCj0wgFwGDGf?state=opened&flow=Default&onscreen=persist

T

&

§ 2)

SN
S %)
Qb A

Other Optimization Tradeoffs

No, if prog.c doesn't have the Which of the following is true?
definition of inc. we can'tinline it A, We could also choose to inline inc
Prog.C | won't get the definition until linking. B. yygcxn@drepkxxequtha<xﬂwxantin
int 1 = n + a
C. Wecould replace a with a constantin

<stdio.h> “int i =n+ a”

“helper.h” D. B&C

£ None \ No, we don't know
Yes, we can see that n where a comes from or
int n = 5; hgsthevalue 5 We
could do that.
int main() {
int 1 = n + a;
int j = inc(i); . .
printf("%d+1 = %d\n",1i,3); . return 1+ 3;
} J

helper.h whatits values.

extern int a;
int inc(int n);
inline int sum(int i, int j) {

Cornell Bowers GIS
Computer Science

15

Presenter Notes
Presentation Notes
B

‘\«,,\“‘“""'e,,

S

51 %)

) ‘:J 5
60)
Q8 A2

Cornell Bowers GIS
Computer Science

THE #1 PROGRAMMER EXCUSE
FOR LEGITIMATELY SLACKING OFF:

“MY CODE’S COMPILING.”

HEY! GETBACK.
TOVORK! ./

i
mmmu@

OH. CARRY ON. wAY

http://xkcd.com/303/

16

Compiling — From G to an Executable

compile assemble link

* People saying "compile” usually mean: compile + cssemble + link
* ['s what happens when you run:
gcc -0 prog prog.c

* Last Step = “Load” program into memory (i.e., running it)

Ge=t | Comnell Bowers CIS
“ | Computer Science

Assembler

* [nput: *.s e Qutput: "0
* Program code -- assembly « “Object File”

instructions, pseudo- . .
netructions X » Operating System-Specific

+ Program datz * Binary machine code

* Alignment, memory & type
metadata (layout directives)

as -o prog.o prog.s

addi x5, x@, 10 0010000000000101000000VVLVLV10106
muli x5, x5, 2 00000000000001010010100001000000
addi x5, x5, 15 00100000101001010000000000001111

Cornell Bowers GIS
Computer Science

‘\Q\‘\,um%’

S

51 %)

) c;’ 5
60)
Qb A

18

Assembler

* Need to translate pseudo-instructions to real mv x4, X2
instructions
* LI (“load immediate”) -> LUl + ADDI, or just ADD! ‘l
* MV ("move”) > ADD add x4, x2, x0 #but in binary
* Other common translations in RISC-V handbook
* Symbols & References bne x1, x2, L1
« Similarinformation to the Assembly file e
 Global labels - externally “exported” symbols L1: add x2, x2, x4
(global variables, exported functions) “

 Local labels - only used within the object file

e Present as metadata, but also removed from
assembly instructions

bne x1, x2, 12

add x2, x2, x4

Cornell Bowers GIS
Computer Science

éﬁ'\‘\'uulyﬁ,

S

51 %)

) ‘::’ 5
60)
Q8 A2

19

é«,,\“-“""'e,

S

51 %)

) ‘:J 5
60)
Q8 A2

What’s in an Object File -- Binary Format

* Header
* Formatting information, size and position of segments

* Text Segment
* Instructions

* Data Segment
e Constants /other static data

* Debugging Information
* Line number /variable name -> instruction / memory mapping

* Symbol Table

e Global and Local References

Cornell Bowers GIS
Computer Science

20

éﬁ\‘\‘uulyﬁ,

S

51 %)

) ‘::’ 5
60)
Qb A

If you ever do need to read an object file

objdump -D prog.o

Probably only need to do this
when working on embedded
systems or when you're writing
“inline assembly” or buffer
overflow assignment

Cornell Bowers GIS
Computer Science

prog.o: file format elf32-littleriscv
Disassembly of section .text:
000V <main>:

0: fe0l10113 addi sp,sp,-32

4: 00113c23 sd ra, 24(sp)

Disassembly of section .sdata:

21

&"““"“’ﬁ,

&

4 2)

SN
S %)
Qb A

Application Binary Interface (ABI)

* Specific to Operating System
* Describes how to load the program into memory
» Describes how to run the code
« Describes which functions/variables it exports

e Unix: AP]

» Executable and Linkable Format (ELF)
« Common Object File Format (COFF)

e Windows:
» Portable Executable (PE)

e Mac:
e Mach-0O

Cornell Bowers GIS
Computer Science

22

Portabilit

wNoeuaaxynew;ﬂogmmﬂandw@ntEVERYONEtobeabkﬁmrunm

How many times do | need to compile & assemble it to support Mac,
Windows, & Linux machines which run on either ARM or x86_64 chips?

. Just once!
. 2times
. 3times
. 5times
6 times

| Cornell Bowers CIS
w2 | Computer Science

23

Portablllt

| wrote a coy new program and want EVERYONE to be able to run it.

How many times do | need to compile & assemble it to support Mac,
Windows, & Linux machines which run on either ARM or x86_64 chips?

. Just once!

. 2 times
. 3times
. 5times

o6 times

| Cornell Bowers CIS
w2 | Computer Science

You have to re-compile top-to-bottom it you
change either the OS or the Architecture ®

Not only is assembly code different, OS
libraries differ, so you also might even need
to change your source code too!!

24

Compiling — From G to an Executable

compile assemble

Link

* People saying "compile” usually mean: compile + cssemble + link

* ['s what happens when you run:
gcc -0 prog prog.c

* Last Step = “Load” program into memory (i.e., running it)

Ge=t | Comnell Bowers CIS
“ | Computer Science

Compiling — From G to an Executable

link

compile assemble

» Separate compilation units (files)

* Changeinonly 1 file? Only recompile 1 file (unless this changed an interface - e.q.,
the argument types to a function)

 Link object files together into a single executable

et | Cornell Bowers C1S
¢ | Computer Science

26

Linker

« Combine object files into an executable helper.o

e Time toresolve all siim Dols!

prog.c:(.text+0x44): undefined reference to "“printf’

Pro Tip!

Your program needs to
be linked against the
“standard library” if
using ‘built-ins’

== | Cornell Bowers CIS

7 | Computer Science

21

Linker

» Combine object files into an executable helper.o
* Time to resolve all symbols!

» Fach object file “imagines” it has its own main
memory array (a.k.a. address space)
* Linking relocates code & data
* Merge text & data sections
» Replace final set of labels with offsets

* Record top-level entry point (“main”)
e Format still OS specific (conform to the ABI)

a Cornell Bowers CIS
% | Computer Science

28

Linker

» Combine object files into an executable helper.o
* Time toresolve all symbols!

» Fach object file “imagines” it has its own main
memory array (a.k.a. address space)
* Linking relocates code & data
» Merge text & data sections
» Replace final set of labels with offsets

» Record top-level entry point (“main”
* Format still OS specific (conform to tre 7

a Cornell Bowers CIS)9
% | Computer Science

Presenter Notes
Presentation Notes
Making control flow PC relative makes code easily relocatable

Position-Independent Code

* [T you can’t move code or
data around, it’s difficult to
Nk against it

o When instructions use
PC-Relative addresses, it’s
much easier to move code &
data around.

gre=ty | Comnell Bowers CIS
%Ly | Computer Science

30

Static Libraries

* A collection of object files (also called an archive)
* Can make your own (e.g., put helper.oin an archive)
* Only the objects we need in our executable

* A bunch of standard ones come with your OS (e.g., libc)
* Typically each object file ~ one function or one family of functions
e printf.o, read.o, exit.o, rand.o
 Specific to OS —systemcall heavy code

| Cornell Bowers CIS
w2 | Computer Science

31

Presenter Notes
Presentation Notes
These are compiled as Position-Independent Code

* [SAs do not have instructions to R b TR Tl et
« Write to files sUL Pl g o 1
 Draw on the screen | A M e ‘

« Communicate over the network interface | -
« Start a new process e

* These are properties of the OS + P e 4
Peripheral Hardware S e,
« OS+ Firmware are responsible for this g et | T
code (usually involves R/W to special T a8 | —ge
memory addresses) -~ .
* syscalls are ISAinstructions that e T @i i 90 i it
transfer control to OS so it can execute SandyBridge Motherboard, 2011
J[h@S@]CU nctions Take CS 4410 for a http://news.softpedia.com
boatload more info!

0
fifi
WEAAREAFAT

TTRIT

I

gEpgTRA

Cornell Bowers CIS 3
Computer Science

BEEES

(]

Compiling — From G to an Executable
The Last Step

compile assemble

* OS “Loads” program into memory from disk
 Called the loader

* Initialize registers, stack, “main” arguments
e Jumps toentry point

B | Gmsons TV gemu prog .

%2 | Computer Science

Drintf.o

Drog.o .
(o g

loader

helper.o

MEMORY

Questions?

compile assemble

* We're touching on Operating Systems, Compilers, and Memory
Layout details — so we're eliding a lot of the subtlety

* Are there details about this process you're curious about?

Ge=t | Comnell Bowers CIS
% | Computer Science

34

‘,e"““"“'c,

&

4 2)

SN
S %)
Qb A

Shared Libraries — Optimizations

* [ibcis used by almost every program Disk

* Don’t want copies in every executable -

* Can assume everyone uses it
(common case!)

* Static Loading:
* Loader does the linking right before
starting the program
* Only 1 copy of shared library on disk

« Can update or customize library
without re-linking

Cornell Bowers GIS
Computer Science

MEMORY

&"““"“’ﬁ,

&

4 2)

SN
S %)
Qb A

Shared Libraries — Optimizations

* libcisused by almost every program
* Don’'t want copies in every executable
e Can assume everyone uses

e Static Loading:
» Loader does the linking right before

starting the program
* Only 1 copy of shared library on disk

« Can update or customize library without re-
linking

MEMORY

» Can pick fixed parts of the address
space to store their code & data -
no matter who calls them!

(no relocation necessary)

* Thesefiles look like: 1ibgcc.so

Cornell Bowers GIS
Computer Science

36

Another Linking Option

e Static Linking * Dynamic Linking
e Big Executables * Use Virtual Memory to link code
(and TEXT segment) atruntime
* Small executable (and TEXT

. iﬁgEﬂSGh;Orae?E%;OSt segment if code not called)

* Very little load time — some

* Fewer (usually no) compatibility ‘untime cost

oroblems
* Potential compatibility issues
(not discovered until runtime)

e Noruntime or load-time

updates
* Candynamically update code

| Cornell Bowers CIS
w2 | Computer Science

Another Linking Option

e Static Linking * Dynamic Linking
e Big Executables * Use Virtual Memory to link code
(and TEXT segment) atruntime

 Small executable (and TEXT

* Some loading cost segment if code not called)

(for shared libsber i

VIRTUAL MEMORY in
a few weeks.

't provides the jllusion
that every program
gets ALL THE
MEMORY!!!

* Very little load time — some

e Fewer (US .
| runtime cost

oroblem

* Potential compatibility issues

* No runt (not discovered until runtime)

updates
* Candynamically update code

| Cornell Bowers CIS
w2 | Computer Science

é«,,\“-“""'e,

S

51 %)

) ‘:J 5
60)
Q8 A2

Why The Gory Detail?

* Goal for the Course

* Understand, from “top to bottom” what happens when your
program runs on a computer

* Debug errors you will see as a programmer

* Building low level code
* Making builds "portable”

*EfTiciency of Builds

* What tradeoffs you can make while compiling/linking to save on:
* Space, compilation time, program efficiency

Cornell Bowers GIS
Computer Science

39

Compiling — From G to an Executable

Drintf.o

| link
compile assemble
helper.s helper.o loader
« Compiler: Source to Assembly MEMORY
* Assembler: Assembly to Object File
* Linker: Object Files to Executable
* Loader: Executable into Memory
Sty | Cornell Bowers CIS
&9 | Computer Science 40

	Compilation – �Assemblers, Linkers, & Loaders
	Compiling – From C to an Executable
	Compiling – From C to an Executable
	Why The Gory Detail?
	Working Example – prog.c
	Compiler
	Compiling – prog.s contents
	Compiling – Procedure
	Optimization Tradeoffs
	Optimization Tradeoffs
	Optimization Tradeoffs – Function Inlining
	Poll Everywhere multiple choice poll activity
Activity Title: What are possible side-effects of inlining?
Slide 12
	Other Optimization Tradeoffs
	Poll Everywhere multiple choice poll activity
Activity Title: Which of the following is true?
Slide 14
	Other Optimization Tradeoffs
	Slide Number 16
	Compiling – From C to an Executable
	Assembler
	Assembler
	What’s in an Object File -- Binary Format
	If you ever do need to read an object file
	Application Binary Interface (ABI)
	Portability?
	Portability?
	Compiling – From C to an Executable
	Compiling – From C to an Executable
	Linker
	Linker
	Linker
	Position-Independent Code
	Static Libraries
	System Calls
	Compiling – From C to an Executable�The Last Step
	Questions?
	Shared Libraries – Optimizations
	Shared Libraries – Optimizations
	Another Linking Option
	Another Linking Option
	Why The Gory Detail?
	Compiling – From C to an Executable

