
Compilation –
Assemblers, Linkers, & Loaders
CS 3410: Computer System Organization and Programming

[K. Bala, A. Bracy, E. Sirer, and H. Weatherspoon]

Compiling – From C to an Executable

• People saying ”compile” usually mean: compile + assemble + link
• It’s what happens when you run:

gcc –o prog prog.c helper.c

• Last Step = “Load” program into memory (i.e., running it)

2

prog.c prog.s prog.o prog

compile assemble link

Compiling – From C to an Executable

• Compiler: Source to Assembly
• Assembler: Assembly to Object File
• Linker: Object Files to Executable
• Loader: Executable into Memory

MEMORY

loader

prog.s prog.o prog

helper.s helper.o

prog.c

helper.c

printf.o

compile assemble
link

3

Why The Gory Detail?
• Goal for the Course

• Understand, from “top to bottom” what happens when your
program runs on a computer

• Debug errors you will see as a programmer
• Building low level code
• Making builds ”portable”

• Efficiency of Builds
• What tradeoffs you can make while compiling/linking to save on:

• Space, compilation time, program efficiency

4

Working Example – prog.c

#include <stdio.h>
#include “helper.h”

int n = 5;

int main() {
 int i = sum(n, a);
 int j = inc(i);
 printf("%d+1 = %d\n",i,j);
}

extern int a;
int inc(int n);
int sum(int i, int j);

int a = 3;
int inc(int n) { return n+1; }
int sum(int i, int j) { return i + j ; }

helper.h

helper.c

prog.c

5

Compiler
• Input: *.c

• Source Code
• Headers (function & global variable definitions)

• Output: *.s
• Target Architecture

(e.g., RISC-V, x86_64)
• Assembly Instructions

(not yet machine code)

(subject of the calling conventions lectures)

prog.c

prog.s

gcc –S prog.c

return n+1;

addi a0, a0, 1

6

Compiling – prog.s contents
• Metadata

• filename, debug symbols

• Memory layout
• Section, alignment

• External References
• .comm a, 4, 4 (common symbol a)

• Constants & Function Bodies
• Still references global and external variable

names

(you don’t need to memorize these –just
get a feel for what’s in the assembly file)

.file “prog.c”

.align 2

.globl main

.type main, @function

main:
 addi sp, sp, -32
 lui a5, %hi(n)
 …
 .globl n
 …
n:
 .word 5
 .section .rodata
 .align 3
.LC0:
 .string “%d+1 = %d\n”
 .text
 .align 2
…

7

Compiling – Procedure
• Each file compiled separately

• (so we would also produce “helper.s” in our previous example)

• Optimizations
• Flags: -O0, -O1, -O2, -O3 (none to all)
• Dead code elimination, constant folding, loop unrolling, etc.
• Some rarely (if ever) applied without programmer hints

(function inlining & loop unrolling)
• List of gcc’s optimiztions - can also flag individual opts
• Most are local optimizations (i.e., functions are optimized individually)

• Take 4120 if you want to really really know how compilers work

gcc –O2 –S prog.c

8

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

Optimization Tradeoffs • Certain optimizations only executed
when given programmer hints

• E.g., function inlining
• Replace a function call by copying

the body of the function you’re
calling into your body

extern int a;
int inc(int n);
int sum(int i, int j) {
 return i + j;
};

helper.h

#include <stdio.h>
#include “helper.h”

int n = 5;

int main() {
 int i = sum(n,a);
 int j = inc(i);
 printf("%d+1 = %d\n",i,j);
}

prog.c

9

Optimization Tradeoffs

#include <stdio.h>
#include “helper.h”

int n = 5;

int main() {
 int i = n + a;
 int j = inc(i);
 printf("%d+1 = %d\n",i,j);
}

prog.c

extern int a;
int inc(int n);
inline int sum(int i, int j) {
 return i + j;
};

helper.h

10

• Certain optimizations only executed
when given programmer hints

• E.g., function inlining
• Replace a function call by copying

the body of the function you’re
calling into your body

Optimization Tradeoffs – Function Inlining
What are possible side-effects of inlining?

A. The static code size could decrease.
B. The static code size could increase.
C. The code could become easier to optimize.
D. The code could be slower.
E. There will be fewer data memory accesses.

#include <stdio.h>
#include “helper.h”

int n = 5;

int main() {
 int i = n + a;
 int j = inc(i);
 printf("%d+1 = %d\n",i,j);
}

prog.c

extern int a;
int inc(int n);
inline int sum(int i, int j) {
 return i + j;
};

helper.h

11

Presenter Notes
Presentation Notes
Correct Answers: all of them – ask students to give reasons

12

Presenter Notes
Presentation Notes

Do not modify the notes in this section to avoid tampering with the Poll Everywhere activity.
More info at polleverywhere.com/support

What are possible side-effects of inlining?
https://www.polleverywhere.com/multiple_choice_polls/YVLIVqXtPZHbbWECfy2HF?state=opened&flow=Default&onscreen=persist

Other Optimization Tradeoffs
Which of the following is true?

A. We could also choose to inline inc
B. We could replace n with a constant in

“int i = n + a”
C. We could replace a with a constant in

“int i = n + a”
D. B & C
E. None

#include <stdio.h>
#include “helper.h”

int n = 5;

int main() {
 int i = n + a;
 int j = inc(i);
 printf("%d+1 = %d\n",i,j);
}

prog.c

extern int a;
int inc(int n);
inline int sum(int i, int j) {
 return i + j;
};

helper.h

13

14

Presenter Notes
Presentation Notes

Do not modify the notes in this section to avoid tampering with the Poll Everywhere activity.
More info at polleverywhere.com/support

Which of the following is true?
https://www.polleverywhere.com/multiple_choice_polls/ZKiZy8rnoUCj0wgFwGDGf?state=opened&flow=Default&onscreen=persist

Other Optimization Tradeoffs
Which of the following is true?

A. We could also choose to inline inc
B. We could replace n with a constant in

“int i = n + a”
C. We could replace a with a constant in

“int i = n + a”
D. B & C
E. None

#include <stdio.h>
#include “helper.h”

int n = 5;

int main() {
 int i = n + a;
 int j = inc(i);
 printf("%d+1 = %d\n",i,j);
}

prog.c

extern int a;
int inc(int n);
inline int sum(int i, int j) {
 return i + j;
};

helper.h

No. if prog.c doesn’t have the
definition of inc, we can't inline it.
Won't get the definition until linking.

Yes, we can see that n
has the value 5. We
could do that.

No, we don't know
where a comes from or
what its value is.

15

Presenter Notes
Presentation Notes
B

http://xkcd.com/303/

16

Compiling – From C to an Executable

• People saying ”compile” usually mean: compile + assemble + link
• It’s what happens when you run:

gcc –o prog prog.c

• Last Step = “Load” program into memory (i.e., running it)

prog.c prog.s prog.o prog

compile assemble link

17

Assembler
• Input: *.s

• Program code -- assembly
instructions, pseudo-
instructions

• Program data
• Alignment, memory & type

metadata (layout directives)

• Output: *.o
• “Object File”
• Operating System-Specific
• Binary machine code

00100000000001010000000000001010
00000000000001010010100001000000
00100000101001010000000000001111

addi x5, x0, 10
muli x5, x5, 2
addi x5, x5, 15

as –o prog.o prog.s

18

Assembler
• Need to translate pseudo-instructions to real

instructions
• LI (“ load immediate”) -> LUI + ADDI, or just ADDI
• MV (“move”) -> ADD
• Other common translations in RISC-V handbook

• Symbols & References
• Similar information to the Assembly file
• Global labels – externally “exported” symbols

(global variables, exported functions)
• Local labels – only used within the object file

• Present as metadata, but also removed from
assembly instructions

add x4, x2, x0 #but in binary

mv x4, x2

bne x1, x2, 12
…
add x2, x2, x4

bne x1, x2, L1
…
L1: add x2, x2, x4

19

What’s in an Object File -- Binary Format
• Header

• Formatting information, size and position of segments

• Text Segment
• Instructions

• Data Segment
• Constants / other static data

• Debugging Information
• Line number / variable name -> instruction / memory mapping

• Symbol Table
• Global and Local References

20

If you ever do need to read an object file

• Probably only need to do this
when working on embedded
systems or when you’re writing
“ inline assembly” or buffer
overflow assignment

objdump –D prog.o

prog.o: file format elf32-littleriscv

Disassembly of section .text:

00000000 <main>:
 0: fe010113 addi sp,sp,-32
 4: 00113c23 sd ra, 24(sp)
 …
Disassembly of section .sdata:
 …

21

Application Binary Interface (ABI)
• Specific to Operating System

• Describes how to load the program into memory
• Describes how to run the code
• Describes which functions/variables it exports

• Unix:
• Executable and Linkable Format (ELF)
• Common Object File Format (COFF)

• Windows:
• Portable Executable (PE)

• Mac:
• Mach-O

API : Source
Code

ABI Machine
Code:

22

Portability?
I wrote a cool new program and want EVERYONE to be able to run it.
 How many times do I need to compile & assemble it to support Mac,
Window s, & Linux machines which run on either ARM or x86_64 chips?

A. Just once!
B. 2 times
C. 3 times
D. 5 times
E. 6 times

23

Portability?
I wrote a cool new program and want EVERYONE to be able to run it.
 How many times do I need to compile & assemble it to support Mac,
Window s, & Linux machines which run on either ARM or x86_64 chips?

A. Just once!
B. 2 times
C. 3 times
D. 5 times
E. 6 times

You have to re-compile top-to-bottom if you
change either the OS or the Architecture 

Not only is assembly code different, OS
libraries differ, so you also might even need
to change your source code too!!

24

Compiling – From C to an Executable

• People saying ”compile” usually mean: compile + assemble + link
• It’s what happens when you run:

gcc –o prog prog.c

• Last Step = “Load” program into memory (i.e., running it)

prog.c prog.s prog.o prog

compile linkassemble

25

Compiling – From C to an Executable

• Separate compilation units (files)
• Change in only 1 file? Only recompile 1 file (unless this changed an interface – e.g.,

the argument types to a function)
• Link object files together into a single executable

prog.c prog.s prog.o prog

helper.c helper.s helper.o

compile assemble
link

26

Linker
• Combine object files into an executable
• Time to resolve all symbols!

prog.o

prog

helper.o

ld –o prog prog.o helper.o

prog.c:(.text+0x44): undefined reference to `printf’

ld –o prog prog.o helper.o -lc

Pro Tip!

Your program needs to
be linked against the
“standard library” if

using ‘built-ins’

27

Linker
• Combine object files into an executable
• Time to resolve all symbols!

• Each object file “ imagines” it has its own main
memory array (a.k.a. address space)

• Linking relocates code & data
• Merge text & data sections
• Replace final set of labels with offsets

• Record top-level entry point (“main”)
• Format still OS specific (conform to the ABI)

prog.o

prog

helper.o

ld –o prog prog.o helper.o -lc

28

Linker
• Combine object files into an executable
• Time to resolve all symbols!

• Each object file “ imagines” it has its own main
memory array (a.k.a. address space)

• Linking relocates code & data
• Merge text & data sections
• Replace final set of labels with offsets

• Record top-level entry point (“main”)
• Format still OS specific (conform to the ABI)

prog.o

prog

helper.o

ld –o prog prog.o helper.o -lc

Why is the RISC-V JAL instruction
defined to be PC-Relative?

Mnemonic Description
JAL rd, offset R[rd] = PC+4;

PC=PC + imm << 1

29

Presenter Notes
Presentation Notes
Making control flow PC relative makes code easily relocatable

Position-Independent Code
• If you can’t move code or

data around, it’s difficult to
link against it

• When instructions use
PC-Relative addresses, it’s
much easier to move code &
data around.

Why are RISC-V instructions defined to be
PC-Relative?

Mnemonic Description
JAL rd, offset R[rd] = PC+4;

PC=PC + imm << 1
AUIPC rd, offset R[rd] = PC + imm << 12;

30

Static Libraries
• A collection of object f iles (also called an archive)
• Can make your own (e.g., put helper.o in an archive)
• Only link the objects we need in our executable
• A bunch of standard ones come with your OS (e.g., libc)

• Typically each object file ~ one function or one family of functions
• printf.o, read.o, exit.o, rand.o
• Specific to OS – systemcall heav y code

31

Presenter Notes
Presentation Notes
These are compiled as Position-Independent Code

System Calls
• ISAs do not have instructions to

• Write to files
• Draw on the screen
• Communicate over the network interface
• Start a new process

• These are properties of the OS +
Peripheral Hardware

• OS + Firmware are responsible for this
code (usually involves R/W to special
memory addresses)

• syscalls are ISA instructions that
transfer control to OS so it can execute
these functions

SandyBridge Motherboard, 2011
http://news.softpedia.comTake CS 4410 for a

boatload more info!

32

Compiling – From C to an Executable
The Last Step

• OS “Loads” program into memory from disk
• Called the loader

• Initialize registers, stack, “main” arguments
• Jumps to entry point

MEMORY

loader

prog.s prog.o prog

helper.s helper.o

prog.c

helper.c

printf.o

compile assemble
link

./prog

rv qemu prog 33

Questions?

• We’re touching on Operating Systems, Compilers, and Memory
Layout details – so we’re eliding a lot of the subtlety

• Are there details about this process you’re curious about?

prog.c prog.s prog.o prog

compile assemble
link

34

Shared Libraries – Optimizations
• libc is used by almost every program

• Don’t want copies in every executable
• Can assume everyone uses it

(common case!)

• Static Loading:
• Loader does the linking right before

starting the program
• Only 1 copy of shared library on disk
• Can update or customize library

without re-linking

Disk

proghelper.oprog.o

libc.alibc.alibc.alibc.a

hello_world
DATA

MEMORY

TEXT

35

Shared Libraries – Optimizations
• libc is used by almost every program

• Don’t want copies in every executable
• Can assume everyone uses

• Static Loading:
• Loader does the linking right before

starting the program
• Only 1 copy of shared library on disk
• Can update or customize library without re-

linking
• Can pick f ixed parts of the address

space to store their code & data –
no matter who calls them!
(no relocation necessary)

• These files look like: libgcc.so

Disk

proghelper.oprog.o

libc.alibc.alibc.alibc.a

hello_world
DATA

MEMORY

TEXT

printf DATA

printf TEXT

36

Another Linking Option
• Static Linking
• Big Executables

(and TEXT segment)
• Some loading cost

(for shared libs)
• Fewer (usually no) compatibility

problems
• No runtime or load-time

updates

• Dynamic Linking
• Use Virtual Memory to link code

at runtime

• Small executable (and TEXT
segment if code not called)

• Very little load time – some
runtime cost

• Potential compatibility issues
(not discovered until runtime)

• Can dynamically update code

37

Another Linking Option
• Static Linking
• Big Executables

(and TEXT segment)
• Some loading cost

(for shared libs)
• Fewer (usually no) compatibility

problems
• No runtime or load-time

updates

• Dynamic Linking
• Use Virtual Memory to link code

at runtime

• Small executable (and TEXT
segment if code not called)

• Very little load time – some
runtime cost

• Potential compatibility issues
(not discovered until runtime)

• Can dynamically update code

We’ll talk about
VIRTUAL MEMORY in

a few weeks.
It provides the illusion

that every program
gets ALL THE
MEMORY!!!

38

Why The Gory Detail?
• Goal for the Course

• Understand, from “top to bottom” what happens when your
program runs on a computer

• Debug errors you will see as a programmer
• Building low level code
• Making builds ”portable”

• Efficiency of Builds
• What tradeoffs you can make while compiling/linking to save on:

• Space, compilation time, program efficiency

39

Compiling – From C to an Executable

• Compiler: Source to Assembly
• Assembler: Assembly to Object File
• Linker: Object Files to Executable
• Loader: Executable into Memory

MEMORY

loader

prog.s prog.o prog

helper.s helper.o

prog.c

helper.c

printf.o

compile assemble
link

40

	Compilation – �Assemblers, Linkers, & Loaders
	Compiling – From C to an Executable
	Compiling – From C to an Executable
	Why The Gory Detail?
	Working Example – prog.c
	Compiler
	Compiling – prog.s contents
	Compiling – Procedure
	Optimization Tradeoffs
	Optimization Tradeoffs
	Optimization Tradeoffs – Function Inlining
	Poll Everywhere multiple choice poll activity
Activity Title: What are possible side-effects of inlining?
Slide 12
	Other Optimization Tradeoffs
	Poll Everywhere multiple choice poll activity
Activity Title: Which of the following is true?
Slide 14
	Other Optimization Tradeoffs
	Slide Number 16
	Compiling – From C to an Executable
	Assembler
	Assembler
	What’s in an Object File -- Binary Format
	If you ever do need to read an object file
	Application Binary Interface (ABI)
	Portability?
	Portability?
	Compiling – From C to an Executable
	Compiling – From C to an Executable
	Linker
	Linker
	Linker
	Position-Independent Code
	Static Libraries
	System Calls
	Compiling – From C to an Executable�The Last Step
	Questions?
	Shared Libraries – Optimizations
	Shared Libraries – Optimizations
	Another Linking Option
	Another Linking Option
	Why The Gory Detail?
	Compiling – From C to an Executable

