
Pipelining & Performance
CS 3410: Computer System Organization and Programming

Spring 2025

1[K. Bala, A. Bracy, E. Sirer, Z. Susag, and H. Weatherspoon]

Today’s Goals

2

Consider what impacts

processor performance

How to quantitatively estimate performance

Analyze performance / behavior with
diagrams

How to design processors with
better performance

Single-cycle CPU

Multi-cycle CPU

Pipelined CPU

Single-Cycle RISC-V Datapath

3

Clock frequency must be slow enough for the
very slowest instruction to complete in 1 cycle

5

control

A
L
U

Register
File

Data
Mem.

PC

Program
Mem.

+
4

FETCH DECODE EXECUTE MEMORY WRITEBACK

55

PollEverywhere

4

5

control

A
L
U

Register
File

Data
Mem.

PC

Program
Mem.

+
4

FETCH DECODE EXECUTE MEMORY WRITEBACK

55

Which instruction, on average, will take the longest?
A: add x9, x10, x11 B: lw x9, 0(x17) C: addi x9, x10, -42

E: beq x9, x10, EXITD: sw x9, 0(x17)

5

Ever been to Chipotle?

6

That's more like it!

7

Iron Law of Processor Performance
How do we make a processor that runs programs faster?

TODAY: tradeoff between CPI and clock period!

𝑡𝑖𝑚𝑒
𝑝𝑟𝑜𝑔𝑟𝑎𝑚

=
𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡 𝑖𝑜𝑛𝑠
𝑝𝑟𝑜𝑔𝑟𝑎𝑚

 ×
𝑐𝑦𝑐𝑙𝑒𝑠

𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡 𝑖𝑜𝑛
 ×
𝑡𝑖𝑚𝑒
𝑐𝑦𝑐𝑙𝑒

CPI Clock
Period

8

First Step: Shorten Clock Period

9

5

control

A
L
U

Register
File

Data
Mem.

PC

Program
Mem.

+
4 55

• Single-cycle processors have long clock periods
• Limited by slowest instruction

Can we decouple the
clock period from

instruction latency?

First Step: Multi-Cycle RISC-V Datapath

10

5

control

A
L
U

Register
File

Data
Mem.

PC

Program
Mem.

+
4 55

• Break datapath into multiple cycles (here 5)
• Add registers to store results at the end of each cycle
• Fetch, decode, and execute 1 instruction over multiple cycles
• Allows instructions to take different numbers of cycles
• Opposite of single-cycle: short clock period, high CPI

First Step: Multi-Cycle RISC-V Datapath

11

5

control

A
L
U

Register
File

Data
Mem.

PC

Program
Mem.

+
4 55

• Break datapath into multiple cycles (here 5)
• Add registers to store results at the end of each cycle
• Fetch, decode, and execute 1 instruction over multiple cycles
• Allows instructions to take different numbers of cycles
• Opposite of single-cycle: short clock period, high CPI

DF MX W
Representation

add:

beq:

Single-Cycle vs. Multi-Cycle
ld:

Single-cycle

DF MX W
DF MX W

DF MX W

add:

beq:

ld:

Multi-cycle
DF MX W

DF X
DF X Wmany short

clock cycles

1 looooooooooong clock cycle

12

Cycle
0 1 2 3

Cycle
0 1 10 152 3 4 5 6 7 8 9 11 12 13 14

Gray indicates
that the stage

didn’t do
anything

Single- vs. Multi-cycle Performance
Metric Single Cycle Multi Cycle

13

Single- vs. Multi-cycle Performance
Metric Single Cycle Multi Cycle

Clock Period
(time / cycle) F + D + X + M + WB MAX (F, D, X, M, WB) + ε

ε is the
overhead of

accessing stage
registers

14

Single- vs. Multi-cycle Performance

Use Average CPI – Depends on what programs (workloads) you run!
• E.g.: Branch: 20% (3 cycles), Load: 20% (5 cycles), ALU: 60% (4 cycles)

• CPI = 0.2 * 3 + 0.2 * 5 + 0.6 * 4 = 4

• Caveat: calculation ignores many effects
• Back-of-the-receipt arguments only (i.e., it’s a rough estimate)

Metric Single Cycle Multi Cycle
Clock Period
(time / cycle) F + D + X + M + WB MAX (F, D, X, M, WB) + ε

Cycles Per Instruction
(CPI) 1 ??

(It depends!)

15

Single- vs. Multi-cycle Performance
Metric Single Cycle Multi Cycle

Clock Period
(time / cycle) F + D + X + M + WB MAX (F, D, X, M, WB) + ε

Cycles Per Instruction
(CPI) 1 (It depends!)

Performance
(time / instruction) Multiply down to see who wins!

16

Single- vs. Multi-cycle Performance
Metric Single Cycle Multi Cycle

Clock Period
(time / cycle) 900 ns 205 ns

Cycles Per Instruction
(CPI) 1 4

Performance
(time / instruction) 900 ns 820 ns

• Some concrete numbers:
• Stage latency: F = 170ns, D = 180ns, X = 200ns, M = 200ns, W = 150ns , Register = 5ns
• Branch: 20% (3 cycles), Load: 20% (5 cycles), ALU: 60% (4 cycles)

17

18

19

20

Is multi-cycle better?

21

“When you see a good move,
 look for a better one.”

-Emanuel Lasker

Improving Multi-Cycle Pipeline

22

5

control

A
L
U

Register
File

Data
Mem.

PC

Program
Mem.

+
4 55

Improving Multi-Cycle Pipeline

23

5

control

A
L
U

Register
File

Data
Mem.

PC

Program
Mem.

+
4 55

Improving Multi-Cycle Pipeline

24

5

control

A
L
U

Register
File

Data
Mem.

PC

Program
Mem.

+
4 55

Improving Multi-Cycle Pipeline

25

5

control

A
L
U

Register
File

Data
Mem.

PC

Program
Mem.

+
4 55

Improving Multi-Cycle Pipeline

26

5

control

A
L
U

Register
File

Data
Mem.

PC

Program
Mem.

+
4 55

Only one stage of the CPU is active per cycle!

Pipelining
An implementation technique in which multiple instructions are overlapped in execution.

27

Pipelining Example: Laundry
• Doing 1 load of laundry requires the sequence:

• Wash 20 min

• Dry 30 min

• Fold 10 min

28

Laundry Example
Load #

1

2

3

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

29

Laundry Example – Serial Case
Load #

1

2

3

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

30

Laundry Example – Serial Case
Load #

1

2

3

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

31

Laundry Example – Serial Case
Load #

1

2

3

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

32

Laundry Example – Serial Case
Load #

1

2

3

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

33

Laundry Example – But with Pipelining!
Load #

1

2

3

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

34

Laundry Example – But with Pipelining!
Load #

1

2

3

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

35

Laundry Example – But with Pipelining!
Load #

1

2

3

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

36

Laundry Example – But with Pipelining!
Load #

1

2

3

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

Which resources
are in use at a

given time

Which resources a given task
uses over time.

37

Multi-Cycle à Pipelined

38

add:

beq:

ld:Multi-cycle DF MX W
DF X

DF X W

Cycle
0 1 10 152 3 4 5 6 7 8 9 11 12 13 14

add:

beq:

ld:Pipelined DF MX W
DF X

DF X W

Cycle
0 1 10 152 3 4 5 6 7 8 9 11 12 13 14

M W
M

Each instruction takes n
short cycles based on
the work that needs to

be done

Each instruction takes n
short cycles no matter
what, but runs multiple
instructions in parallel

Principles of Pipelining
Break datapath into multiple cycles (5 for our RISC-V example)
• Parallel execution increases throughput
• Balanced pipeline very important
• Slowest stage determines clock rate
• Imbalance kills performance

Add pipeline registers (flip-flops) for isolation
• Stage begins by reading values from previous register
• Stage ends by writing values to next register

39

Number of tasks
completed in a
fixed period of

time

Pipeline Stages
Stage Functionality Values of Interest

(to be latched)

Fetch Use PC to fetch current instruction,
increment PC Instruction bits (to be decoded)

Decode Decode instruction, generate control
signals, read Register File

Control information, rd index,
immediates, offsets, register values
(RF[rs1], Rf[rs2])

Execute Perform ALU operation
Control information, rd index, etc.
Result of ALU operation, value in case
of a store instruction

Memory Perform load/store if needed,
address is ALU result

Control information, Rd index, etc.
Result of load, pass result from
execute

Writeback Select value, write to Reg. File
40

41

42

43

RISC-V is Designed for Pipelining
Instructions same length (32 bits)

• easy to fetch
• easy to decode

Few instruction formats
• Easy to decode
• Easy to route bits between stages

• Can read a register source before even knowing what the
instruction is!

Memory accessed through lw and sw only
• Access memory after ALU

funct
7

rs2 rs1 funct3 rd op

7 bits 5 bits 5 bits 3 bits 5 bits 7 bits
imm rs1 funct3 rd op

12 bits 5 bits 3 bits 5 bits 7 bitsimm rs2 rs1 funct3 imm op
7 bits 5 bits 5 bits 3 bits 5 bits 7 bitsimm rd op

44

RISC-V Pipelining in Action!
add x3, x1, x3
and x6, x4, x5
lw x4, 20(x7)
sub x5, x2, x5
sw x7, 12(x3)

45

Pipelining in Action (1)

46

5

control

A
L
U

Register
File

Data
Mem.

PC

add x3, x1, x3
and x6, x4, x5
lw x4, 20(x7)
sub x5, x2, x5
sw x7, 12(x3)

+
4 55

FETCH DECODE EXECUTE MEMORY WRITEBACK

add x3,x1,x3

Pipelining in Action (2)

47

5

control

A
L
U

Register
File

Data
Mem.

PC

add x3, x1, x3
and x6, x4, x5
lw x4, 20(x7)
sub x5, x2, x5
sw x7, 12(x3)

+
4 55

FETCH DECODE EXECUTE MEMORY WRITEBACK

add x3,x1,x3 and x6, x4, x5

Pipelining in Action (3)

48

5

control

A
L
U

Register
File

Data
Mem.

PC

add x3, x1, x3
and x6, x4, x5
lw x4, 20(x7)
sub x5, x2, x5
sw x7, 12(x3)

+
4 55

FETCH DECODE EXECUTE MEMORY WRITEBACK

add x3,x1,x3 and x6, x4, x5lw x4, 20(x7)

Pipelining in Action (4)

49

5

control

A
L
U

Register
File

Data
Mem.

PC

add x3, x1, x3
and x6, x4, x5
lw x4, 20(x7)
sub x5, x2, x5
sw x7, 12(x3)

+
4 55

FETCH DECODE EXECUTE MEMORY WRITEBACK

add x3,x1,x3 and x6, x4, x5lw x4, 20(x7)sub x5, x2, x5

Pipelining in Action (5)

50

5

control

A
L
U

Register
File

Data
Mem.

PC

add x3, x1, x3
and x6, x4, x5
lw x4, 20(x7)
sub x5, x2, x5
sw x7, 12(x3)

+
4 55

FETCH DECODE EXECUTE MEMORY WRITEBACK

add x3,x1,x3 and x6, x4, x5lw x4, 20(x7)sub x5, x2, x5sw x7, 12(x3)

Interface vs. Implementation
Pipelining is a powerful technique to mask latencies and increase
throughput

• Logically, instructions execute one at a time
• Physically, instructions execute in parallel

Abstraction promotes decoupling
• Interface (ISA) vs. implementation (Pipeline)

51

Architect
Builds:

1. add x3, x1,
x3

2. and x6, x4,
x5

3. lw x4,
20(x7)

4. sub x5, x2,
x5

5. sw x7,
12(x3)

Compiler
Thinks About:

52

53

54

CPU Performance

Pipelining is the best of both worlds!!

55

Metric Single Cycle Multi Cycle Pipelined
Clock Period
(time / cycle) F + D + X + M + W MAX (F, D, X, M, W)

+ ε
MAX (F, D, X, M, W)

+ ε
Cycles Per
Instruction

(CPI)
1 (It depends!) 1

Performance
(time / instruction) Multiply down to see who wins!

Pipeline Diagrams

56

DF MX W
DF X

DF X W

0 1 2 3 4 5 6 7

M W
M

Pipeline Diagrams

57

DF MX W
DF X

DF X W

0 1 2 3 4 5 6 7

M W
M

What two instruction
sequence would not

function correctly given
this pipelined processor?

Pipeline Diagrams

58

DF MX W
DF X

DF X W

0 1 2 3 4 5 6 7

M W
M

What two instruction
sequence would not

function correctly given
this pipelined processor?

lui x1, imm
addi x2, x1, 3

j LABEL
<any instruction>

Today’s Goals

59

Consider what impacts

processor performance

How to quantitatively estimate performance

Analyze performance / behavior with
diagrams

How to design processors with
better performance

Single-cycle CPU

Multi-cycle CPU

Pipelined CPU

