RISC-V

CS 3410: Computer System Organization and Programming

Spring 2025

Cornell Bowers GIS [K. Bala, A. Bracy, G. Guidi, E. Sirer, A. Sampson, Z. Susag, and H. Weatherspoon]

Computer Science

Cornell Bowers GIS
Computer Science

e

to:

from:

if I were a mux I'd select you

you make

my heart
flip-flop <3

D o—

| | sfor+

o ol bl

it's not hard

[D_D' to decode my

to:

_|':>_D2 feelings for

I —Pe you <3

from:

Va

valentine, we
two's complement

each other

perfectly <3

i

» T

I'm falling (edge) in love with you

to: from:

you hold the NP
A A A
karnaugh map —— :

to my heart
Bl|1 | 1 1

to:

from: c ¢t ¢ c
1 0/0(1|0|1|/0)|1

are u the leftmost bit? because u are

the most significant to me <3

to:

from:

Cornell Bowers GIS
Computer Science

THIS 1S WHAT LEARNING LOGIC GATES FEELS LIKE

SEE, YOU JUST CONNECT THIS 12 INPUT REVERSE
FLIP-FLOP TO THE CONTROLLED TWO-THIRDS ADDER,
WHICH RESETS THE LATCHES IN THE NOT-NAND RELAY
ARRAY, THEN LOOP BACK TO ODD-NUMBER INPUTS
AND REVERSE ALL YOUR SWITCHES/

AND WHAT'S

e
THAT PO SUBTRACTION.

Logistics

* A3: Huffman Encoding was due last night; accepted late using slip
days until Saturday (2/15)

* Lab 4: GDB to be completed in-class today & tomorrow

* No homework over February break
* No class on Tuesday (2/18)!!

* Prelim 1 next Thursday (2/20) @ 7:30pm in STL185

« We will have a lecture next Thursday (2/20)
* A4: CPUSIM will be released Thursday (2/20)

s== | Cornell Bowers CIS

%2 | Computer Science

Roadmap

e Machine Code & ISAs

e RISC-V Overview

* Instruction Encoding

* Arithmetic Instructions

* Logical Instructions

* Immediate Instructions
* Assembly Programming

S=sry | Cornell Bowers CIS

7 | Computer Science

Levels of Languages

C

RISC-V

assembly

language

RISC-V

int x = 10
2 * x

@

>
X = + 15;

addi x5, x0, 10
muli x5, x5, 2
addi x5, x5, 15

\ 4

00000000101000000000001010010011

mac h Ine 00000000001000101001001010011111

code

00000000111100101000001010010011

High Level Language
* C, Java, Python, Rust, ...

* Loops, control flow,
variables

Assembly Language
* No symbols (except labels)
* One operation per statement
* “human readable machine
language”

Machine Code

* Binary-encoded assembly
* Labels become addresses
* The language of the CPU

~— ~~—" " Instruction Set Architecture

Cornell Bowers GIS
Computer Science

ALU, Control, Register File, ...

Machine Implementation
(Microarchitecture)

9 Instruction Processing

Instructions are

stored in memory,
encoded in binary

Cornell Bowers GIS
Computer Science

Instruction
memory

l T2

00

A 4

v

ALU

Qa
» Dy,
inst

“ register file Qs

32 W Ry Ry Rg

/’/’/’

515 |5

— N

NEW pc (control)
calculation U

Zachary Susag
Sticky Note
Instructions are stored in memory. During each processor cycle:
•PC (program counter) gets updated to point to the next instruction to execute
•Instruction is fetched from memory
•Instruction then gets decoded
•Lastly, instruction is executed

~ RISC-V

* An instruction set architecture
(ISA)

* Alanguage for machine code

* Design Principles
» Simplicity favors regularity
e 32-bitinstructions
* General purpose
* Open source!

RISC

Cornell Bowers GIS
Computer Science

‘\t\‘_umy%

W

& 2

\CI)
2D S
26p A>

Zachary Susag
Sticky Note
•Each ISA defined a “meaning” for strings of bits (binary encoded instructions)
•RISC-V is a popular, modern ISA

=

Why learn Assembly Programming?

* You get to understand the language that the computer actually
speaks

* Relevant for exceptional cases:
1. Performance-sensitive applications (e.g., FFmpeg)
2. Operating systems
3. Security-sensitive applications (e.g., to avoid timing attacks)
4, Advanced diagnostics (e.g., compiler bugs!)

Cornell Bowers CIS
Computer Science

‘\e\,\.umb%
W

& 2

\CI)
2D S
26p A>

Zachary Susag
Sticky Note
- Ffmpeg contains hand-written RISC-V assembly for performance critical functions.
-Operating system internals
-Secure code to avoid timing channels (assembly can ensure commands take constant amount of time)
-Reading assembly for diagnostics

“u

Have you programmed in assembly before?

O Never (@ I'vedabbled @3 1I've written a functionortwo [1'm an elite assembly h4x0r

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Demo

Cornell Bowers CIS

Computer Science

Executing add a0, , al

1. add a0, , al
Qa >
. : DW
Instruction inst
ALU
memory] .
T register file Qs >
32 W Ry Rs Rs >
/, Tz ’///’/
64 00 515 1|5
PC —
3 newpe (" control)
calculation v

Cornell Bowers GIS
Computer Science

Executing add a@, - al

1. add a0, , al
Qa =
» Dy
Instruction inst
memory _] . ‘ ALU
g register file Qs >
32 W__ RyRy R —
/“’ T2 rrrry
64 00 505 |5
PC P _
7 New pe (control)
calculation N S
2. add a0, , al

Cornell Bowers GIS
Computer Science

Executing add a@, - al

1. add a0, , al ;
Qa —
» Dy
Instruction inst
memory _] . 3.al ALU
7 register file Qs > <
32 W Ry Ry Ry — 3.add
/“’ T2 rrrry
64 00 505 |5
PC P L
7 new pe (control)
calculation N—_
2. add a0, , al

Cornell Bowers GIS
Computer Science

Executing add a0,

- al

4.] +R[al]
1. add a0, , al ;
Qa —
» Dy
Instruction inst
memory _] . 3.al ALU
7 register file Qe ; -
. et — 3. add
/“’ T2 rryry
64 00 505 |5
PC o .
7 newpe (control
calculation N
2. add a0, . al

Cornell Bowers GIS
Computer Science

15

Executing add a@, - al

4. R[a0] +R[al]

1. add a0, , al ;
Qa - >
Instruction it '
memory _] . 3.al ALU
7 register file Qe ; -
. — — 3. add
/“’ T2 rryry
64 00 5[5 |5
PC P L
1 New pe (control)
calculation N
2. add a0, . al

Cornell Bowers GIS
Computer Science

Registers

* RISC-V has 32 registers
* Each stores 64-bit integers

* Different registers are used for
different purposes
* X0 is also known as zero

 X10 through x17 are a0
through a'7

* X5,x6,x7,x28-x31 are tO-
t6

* X8,xX9,x18-x27 are s0-sll

Cornell Bowers GIS
Computer Science

Register A Symbolic

name

x0

x1

x2

x3

x4

x5
X6—7
x8

x9
x10-11
x12-17
x18-27
x28-31

f0-7
f8-9
f10-11
f12-17
f18-27
f28-31

Description
name
32 integer registers
zero Always zero
ra Return address
sp Stack pointer
ap Global pointer
tp Thread pointer
10 Temporary / alternate return address
t1-2 Temporaries
s0/fp Saved register / frame pointer
s1 Saved register
a0-1 Function arguments / return values
a2—7 Function arguments
s2—-11 Saved registers
13-6 Temporaries
32 floating-point extension registers

fto—7 Floating-point temporaries
fs0—1 Floating-point saved registers
fa0-1 Floating-point arguments/return values
fa2—7 Floating-point arguments
fs2—11 Floating-point saved registers
ft8—11 Floating-point temporaries

17

UGG
$$ A\
5)
L&)
%)

Db A>

Cornell Bowers GIS
Computer Science

Destination

Operands

add a®, a0, al

U

add x10, - x11

Can reuse registers as source and
destination

18

‘\t\,\.umv%

W

& 2

\CI)
2D S
26p A>

Instruction Types

Arithmetic
 add, subtract, shift left, shift right, multiply, divide

Memory

* load value from memory to a register
» store value to memory from a register

Control flow

 conditional jumps (branches)
* jump and link (subroutine call)

Many other instructions are possible

 vector add/sub/mul/div, string operations
* manipulate coprocessor
* 1/O

Cornell Bowers GIS
Computer Science

19

RISC-V Instruction Types

(Arith metic/Logical

* R-type: result and two source registers, shift amount

* I-type: result and source register, shift amount in 12-bit immediate with sign/zero
extension

\ * U-type: result register, 20-bit immediate with sign/zero extension)

Memory Access
 |-type for loads and S-type for stores
* load/store between registers and memory
« word, half-word and byte operations

Control flow
» S-type: conditional branches: pc-relative addresses
* U-type: jump-and-link
* I-type: jump-and-link register

~N

Cornell Bowers CIS

Computer Science 20

&»_umy%

W

& 2

SNCI)
2D S
Q6 A%

The Manual

| Cornell Bowers CIS
w% | Computer Science

21

R-Type (1): Arithmetic and Logic

------------------------- 0110011

24 20 19 1514 12 11 7 6 (%]
funct7 rs2 rsl funct3 rd op
7bits 5bits 5bits 3 bits 5bits 7 bits

funct7 |funct3 [mnemonic description
000V | 0O ADD rd, rs1, rs2 R[rd] =R[rs1] + R[rs2]
0100000 |00 SUB rd, rs1, rs2 R[rd] =R[rs1] - R[rs2]
00V | 110 ORrd, rs1, rs2 R[rd] =R[rs1] | R[rs2]
00V | 100 XORrd, rs1, rs2 R[rd] =R[rs1] ® R[rs2]

Cornell Bowers GIS
Computer Science

‘&»\.umv%

W

& 2

&)
2D S
Q6 A%

R-Type (1): Arithmetic and Logic

@@@@@@@@@11@@1@@@1@@@@1@@@110@11

24 20 19 1514 1211 7 6
funct7 rs2 rsl funct3 rd op
7bits 5bits 5bits 3 bits 5bits 7 bits

funct7 |funct3 [mnemonic description
000V | 0O ADD rd, rs1, rs2 R[rd] =R[rs1] + R[rs2]
0100000 |00 SUB rd, rs1, rs2 R[rd] =R[rs1] - R[rs2]
00V | 110 ORrd, rs1, rs2 R[rd] =R[rs1] | R[rs2]
» 00V | 100 XORrd, rs1, rs2 R[rd] =R[rs1] ® R[rs2]

example: x4 X8 @® X6 #XOR x4, x8, x6
Cornell Bowers CIS
“E | Computer Science rd, rsl,rs2

Aside: Truncation

* Suppose we want to convert an 8-bit value into a 4-bit value

OO0 0111 =7 = 0111

0000 1111 =15+ 1111 (-1)

Cornell Bowers CIS
“t¥ | Computer Science

‘\Qy\.umv&*

W

& 2

SNCI)
2D S
Q6 A%

Aside: Zero-Extension

* Suppose we want to convert a 4-bit number into an 8-bit number

1 = 0001 = 0000 0001

Cornell Bowers GIS
Computer Science

25

&»\‘umy%

W

& 2

@ Eg S
2D S
Q6 A%

Aside: Sign-Extension

* Suppose we want to convert a 4-bit negative number into an 8-bit
number

-1 = 1111

Remember negative numbers are
encoded using Two’s Complement!

Cornell Bowers GIS
Computer Science

26

LU,
& A
5 2
@ Eg S
2D S

Q6 A%

Aside: Sign-Extension

* Suppose we want to convert a 4-bit negative number into an 8-bit
number

1111 = 1111 1111

The MSB bit (i.e., the sign-bit!) is copied!

Cornell Bowers GIS
Computer Science

27

Aside: Truncation & Extension

 Truncation decreases the size of a value

» Extension increases the size of a value
» Zero-extension fills upper bits with 0
* Used to extend unsigned numbers

 Sign-extension fills upper bits with copies of the most-significant bit
* Used to extend signed numbers

S=sry | Cornell Bowers CIS

7 | Computer Science

R-Type (2): Shift Instructions

_________________________ 0110011

24 20 19 1514 1211 /7 6 %)

funct7 rs2 rsl funct3 rd op
7 bits 5bits 5bits 3 bits 5bits 7 bits

funct7 |funct3 |mnemonic description

000VVO |01 SLLrd, rs1,rs2 | R[rd] =R[rs1] << R[rs2]

0000000o | 101 SRLrd, rs1, rs2 | R[rd] =R[rs1] >>> R[rs2] (zero ext.)
0100000 | 101 SRArd, rs1,rs2 | R[rd] = R[rt] >>> R[rs2] (sign ext.)

Cornell Bowers GIS
Computer Science

‘&»\.umv%

W

& 2

&)
2D S
Q6 A%

R-Type (2): Shift Instructions

@@@0@@@@@11@@@1@@@@1@1@@@@11@@11

24 20 19 1514 1211 /7 6

funct7 rs2 rsl funct3 rd op
7 bits 5bits 5bits 3 bits 5bits 7 bits

funct7 |funct3 |mnemonic description

»- 000VVO |01 SLLrd, rs1,rs2 | R[rd] =R[rs1] << R[rs2]
0000000o | 101 SRLrd, rs1, rs2 | R[rd] =R[rs1] >>> R[rs2] (zero ext.)
0100000 | 101 SRArd, rs1,rs2 | R[rd] = R[rt] >>> R[rs2] (sign ext.)

example: X8 = x4 * 2x6 # SLL x8, x4, x6
X8 = X4 << X6 rd, rsl,rs2

== | Cornell Bowers CIS

Computer Science (Want to multiply by 32? = Store 5 in x6.)

‘\QLum,.%

&

&)

N
% S
Db A>

I-Type (1): Arithmetic w/ immediates

------------------------- 0010011
19 1514 1211 7 6 (%)
imm rsl funct3 rd op
12 bits 5bits 3 bits 5bits 7 bits

funct3 |mnemonic description
5]5]%) ADDI rd, rs1, imm R[rd] =R[rs1] + imm
111 ANDI rd, rs1, imm Rlrd] = R[rs1] & sign_extend(imm)
110 ORI rd, rs1, imm R[rd] =R[rs1] | sign_extend(imm)

Cornell Bowers GIS
Computer Science

31

I-Type (1): Arithmetic w/ immediates

@@@@@@@@@1@1@@11@@@@@@11@@@1@@11

19 1514 12 11 7 6
imm rsl funct3 rd op
12 bits 5bits 3 bits 5bits 7 bits
funct3 |mnemonic description
»' 000 ADDI rd, rs1, imm R[rd] =R[rs1] + imm
111 ANDI rd, rs1, imm Rlrd] = R[rs1] & sign_extend(imm)
110 ORI rd, rs1, imm R[rd] =R[rs1] | sign_extend(imm)
example: + 5 # ADDI x6, x6, 5

=ty | Comnell Bowers CIS
)¢ | Computer Science

X6 = X6
X6 += 5

rd, rsl, imm

32

To compile the codey =z + n, assuming n is an integer, y is stored in x1, and z is stored in x2, you
can use the ADDI instruction. What is the largest number n for which we can continue to use
ADDI?

12

212-1 _ 1 — 2047

212 1 = 4095

216 — 1 = 65535

232-1 _ 1 ~ 2.1 billion

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

n

To compile the codey =z + n, assuming n is an integer, y is stored in x1, and z is stored in x2, you
can use the ADDI instruction. What is the largest number n for which we can continue to use
ADDI?

12 .
0%
21271 1 =2047)
0%
212 — 1 = 4095)
0%
216 — 1 = 65535)
0%
2%2-1 _ 1 ~ 2.1 billion
0%

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

n

To compile the codey =z + n, assuming n is an integer, y is stored in x1, and z is stored in x2, you
can use the ADDI instruction. What is the largest number n for which we can continue to use
ADDI?

12

0%

C212-1 _ 1 = 2047

0%
212 _ 1 = 4095

0%
216 _ 1 = 65535

0%
232-1 _ 1 ~ 2.1 billion

0%

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Zachary Susag
Highlight

U-Type (1): Load Upper Immediate

_________________________ 0110111
31 1211 7 6 (%]
imm rd op
20 bits 5bits 7 bits

mnemonic |description
LUl rd, imm |R[rd] =imm << 12

Cornell Bowers CIS
“t¥ | Computer Science

‘\Qy\.umvﬁ,

W

& 2

&)
2D S
Q6 A%

U-Type (1): Load Upper Immediate

Cornell Bowers GIS
Computer Science

_________________________ 0110111

31 1211 7 6 %)

imm rd op
20 bits 5bits 7 bits

mnemonic |description
LUl rd, imm |R[rd] =imm << 12

example: x5 = 0x5000 # LUI x5, 5
rd, imm

Typical Usage Pattern: LUI x5, 0x12345

ADDI x5, x5 Ox678
1 2 3 4 5

00010010001101000101 shiftby 12
0001001000110100010100000000000O + Ox6/8:
000100100011016000101011660111160600 o

“u

Elhat is the binary encoding of srli a0, a0, 1? 70

Nobody has responded yet.

Hang tight! Responses are coming in.

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Zachary Susag
Sticky Note
0b00000 00 00001 01010 101 01010 0010011

Assembly Programming

Pseudocode
e a0 = 34
@@L = a0 — 13

a?al*z

How do we put
34 into register

a0?

Cornell Bowers CIS
“t¥ | Computer Science

Assembly

39

Assembly Programming

Pseudocode
e d® = 0 + 34
@l = a0 — 13

a2.=a.1*2

How do we put
34 into register

a0?

Cornell Bowers CIS
“t¥ | Computer Science

Always zero!

Assembly
addi a0, x0, 34

40

‘\QLum,.%

&

&)

L&)
% S
Db A>

Assembly Programming

Pseudocode

a0 = 0 + 34
al = a0 — 13-
a2 =al 2 ®

There is no subtract-
immediate

instruction...

Cornell Bowers GIS
Computer Science

Assembly
addi a0, x0, 34

41

‘\QLum,.%

&

&)

L&)
% S
Db A>

Assembly Programming

Pseudocode

a0 = 0 + 34
al = a0 — 13-
a2 =al 2 ®

There is no subtract-
immediate

instruction...

Cornell Bowers GIS
Computer Science

Assembly
addi a0, x0, 34
addi al, a0, -13

42

Assembly Programming

Pseudocode Assembly

a0 = 0 + 34 addi a0, x0, 34
al = a@ - 13 addi al, a0, -13
a2 = al * 2

Multiplying by 2

is the same as
shifting left by 1!

Cornell Bowers CIS
“t¥ | Computer Science

Assembly Programming

Pseudocode Assembly

a0 = 0 + 34 addi a0, x0, 34
al = a@ - 13 addi al, a0, -13
a2 = slli a2, al, 1

al < 1‘

Multiplying by 2
is the same as
shifting left by 1!

Cornell Bowers CIS
“t¥ | Computer Science

Takeaways

* Machine code (encoded in binary) is the language of the computer

* |SAs provide meaning to the machine code
* RISC-V, Arm, x86

* Assembly instructions tell the processor what to do
* These instructions have a specific binary encoding

Everything is just bits!

ey | Cornell Bowers CIS

%2 | Computer Science

