
State
CS 3410: Computer System Organization and Programming

[K. Bala, A. Bracy, E. Sirer, and H. Weatherspoon]

2

int x = 10;
x = 2 * x + 15;C

compiler

addi x5, x0, 10
muli x5, x5, 2
addi x5, x5, 15

RISC-V
assembly
language

00000000101000000000001010010011
00000000001000101001001010011111
00000000111100101000001010010011

RISC-V
machine
language

assembler

x0 = 0

x5 = x0 + 10
x5 = x5 * 2
x5 = x5 + 15

10 x0 x5 op = addi

EVERYTHING IS A NUMBER!
15 x5 x5 op = addi

How does add work?

Big Picture: How to Design a Processor

3

int x = 10;
x = 2 * x + 15;C

compiler

addi x5, x0, 10
slli x5, x5, 1
addi x5, x5, 15

RISC-V
assembly
language

00000000101000000000001010010011
00000000000100101001001010011111
00000000111100101000001010010011

RISC-V
machine
language

assembler

x0 = 0

x5 = x0 + 10
x5 = x5 * 2
x5 = x5 + 15

10 x0 x5 op = addi

EVERYTHING IS A NUMBER!
15 x5 x5 op = addi

How does add work?

Big Picture: How to Design a Processor

4

Big Picture: How to Design a Processor

Processor Memory

Stores data

Runs code; does computations

Doesn’t remember anything

CPU

Can’t compute anything

5

Big Picture: How to Design a Processor

Processor Memory

Stores data

Runs code; does computations

Doesn’t remember anything

Can’t compute anything

register file
ALU

Reg 1
Reg 0

Reg 31
Reg 30

….DW

QA

QB

W RW RA RB

memory

64

PC

2
00

new pc
calculation

Big Picture: How to Design a Processor

6

memory

inst

64

PC

2
00

new pc
calculation

register file

control

5 5 5

ALU

00: addi x5, x0, 10
08: slli x5, x5, 2
10: addi x5, x5, 15

x0x5

0

10

10
32

Review
• We can generalize 1-bit Full Adders to 32 bits, 64 bits …

7

A0 B0

S0

A1 B1

S1

A2 B2

S2

A3 B3

S3

C0

Review
• We can generalize 1-bit Full Adders to 32 bits, 64 bits …

8

A0 B0A1 B1A2 B2A3 B3

0=add
1=sub

S0S1S2S3

Review
• We can generalize 1-bit Full Adders to 32 bits, 64 bits …

9

S0S1S2S3

A0 B0A1 B1A2 B2A3 B3

0=add
1=sub

Review
• We can generalize 1-bit Full Adders to 32 bits, 64 bits …

10

S[64]

A[64]

Cout

B[64]
0=add
1=sub

Review
• We can generalize 1-bit Full Adders to 32 bits, 64 bits …
• Arithmetic Logic Unit (ALU) adds, subtracts, shifts, logic OR, AND, XOR, etc

11

B[64]

A[64]

ALU

add, sub
shift
logic OR, AND, XOR
etc

Goal for today
• How do we store results

12

register file
ALU

Reg 1
Reg 0

Reg 31
Reg 30

….DW

QA

QB

W RW RA RB

Stateful Components
• Until now is combinational logic

• Output is computed when inputs are present
• System has no internal state
• Nothing computed in the present can depend on what happened in the past!

• Need a way
• to record data
• to build stateful circuits
• state-holding device

13

Inputs OutputsN MALU

Stateful Components
• Until now is combinational logic

• Output is computed when inputs are present
• System has no internal state
• Nothing computed in the present can depend on what happened in the past!

• Need a way
• to record data
• to build stateful circuits
• state-holding device

14

Inputs Combinational
circuit

OutputsN M

Goals for Today
State

• How do we store one bit?
• Attempts at storing (and changing) one bit

• Set-Reset Latch
• D Latch
• D Flip-Flops

• How do we store N bits?
• Register: storing more than one bit, N-bits

15

Goal
How do we store store one bit?

16

First Attempt: Unstable Devices

17

B

A

C

Second Attempt: Bistable Devices
• Stable and unstable equilibria?

18

A Simple DeviceA B

In stable state, A != B

A B

1

A B

10 0

Third Attempt: Set-Reset Latch

19

B

�Q

Q

AS

R

Third Attempt: Set-Reset Latch

20

Set-Reset (S-R) Latch
Stores a value Q and its complement

S R Q �Q
0 0
0 1

1 0

1 1

A B OR NOR
0 0 0 1

0 1 1 0

1 0 1 0

1 1 1 0

B

�Q

Q

AS

R

S R Q �Q
0 0 Q �Q
0 1 0 1

1 0 1 0

1 1 forbidden

Third Attempt: Set-Reset Latch

21

Set-Reset (S-R) Latch
Stores a value Q and its complement

S

R

Q
�Q

S R Q �Q
0 0 Q �Q hold

0 1 0 1 reset

1 0 1 0 set

1 1 forbidden

S

R

�Q

Q

Takeaway
Set-Reset (SR) Latch can store one bit and we can change the value of
the stored bit. But, SR Latch has a forbidden state.

22

Next Goal
How do we avoid the forbidden state of S-R Latch?

23

Fourth Attempt: (Unclocked) D Latch

24

Fill in the truth table?

D
S

R

Q

Q

D

D Q �Q
0

1

A B OR NOR
0 0 0 1

0 1 1 0

1 0 1 0

1 1 1 0

S

R

�Q

Q

Takeaway
Set-Reset (SR) Latch can store one bit and we can change the value of
the stored bit. But, SR Latch has a forbidden state.

(Unclocked) D Latch can store and change a bit like an SR Latch while
avoiding the forbidden state.

25

Next Goal
How do we coordinate state changes to a D Latch?

26

Aside: Clocks
Clock helps coordinate state changes

• Usually generated by an oscillating crystal
• Fixed period
• Frequency = 1/period

27

1

0

clock
period

clock
high

clock
low

rising
edgefalling

edge

Clock Disciplines
Level sensitive

• State changes when clock is high (or low)

Edge triggered
• State changes at clock edge

28

positive edge-triggered

negative edge-triggered

Clock Methodology
Clock Methodology
• Negative edge, synchronous

Edge-Triggered signals must be stable near falling edge
 “near” = before and after
 tsetup thold

29

clk

compute save

tsetup thold

compute save compute

tcombinational

Round 2: D Latch (1)

30

S

R

D Q

�Q

D Q �Q
0

1
D Q

�QC

Set

Reset

• Inverter prevents SR Latch
from entering 1,1 state

Round 2: D Latch (1)

31

S

R

D Q

�Q

D Q �Q
0 0 1

1 1 0
D Q

�QC

Set

Reset

• Inverter prevents SR Latch
from entering 1,1 state

Round 2: D Latch (1)

32

S

R

D Q

�Q

C D Q �Q
0 0

0 1

1 0

1 1

D Q
�QC Set

Reset

No
Change

• Level sensitive
• Inverter prevents SR Latch

from entering 1,1 state
• C enables changes

C = 1, D Latch transparent:
 set/reset (according to D)
C = 0, D Latch opaque:
 keep state (ignore D)

C

Round 2: D Latch (1)

33

S

R

D Q

�Q

C D Q �Q
0 0 Q �Q

0 1 Q �Q

1 0 0 1

1 1 1 0

D Q
�QC Set

Reset

No
Change

• Level sensitive
• Inverter prevents SR Latch

from entering 1,1 state
• C enables changes

C = 1, D Latch transparent:
 set/reset (according to D)
C = 0, D Latch opaque:
 keep state (ignore D)

C

S R Q �Q

0 0 Q �Q hold

0 1 0 1 reset

1 0 1 0 set

1 1 forbidden

PollEV Question

34

clk

D

Q

clk D Q �Q
0 0 Q �Q

0 1 Q �Q

1 0 0 1

1 1 1 0

A B

What is the value of Q at A & B?
a) A = 0, B = 0
b) A = 0, B = 1
c) A = 1, B = 0
d) A = 1, B = 1

D Q
�Qclk

Round 3: D Flip-Flop

35

• Edge-Triggered
• Data captured when

clock high
• Output changes only

on falling edges

D Q
�Q

D Q
�QC C

X Q

�Q

D

clk
L1 L2

Round 3: D Flip-Flop

36

Clock = 1: L1 transparent

L2 opaque

D Q D Q
C C

X QD
clk 01

L1 L2

XD

D passes through L1 to X

X

Clock = 0: L1 opaque

L2 transparent

D Q D Q
C C

X QD
clk 10

L1 L2

X Q

X passes through L2 to Q

X

When CLK falls (10),
Q gets X, X cannot change

When CLK rises (01),
now X can change,
Q does not change

iClicker Question – start here

37

clk

D

X

Q

What is the value of Q
at A & B?
a) A = 0, B = 0
b) A = 0, B = 1
c) A = 1, B = 0
d) A = 1, B = 1

BA

D Q D Q

C C
X QD

clk
L1 L2

Building a D Flip Flop (DFF)
Step 1: Create an SR Latch

38

DFF

R

S

QSet Reset Q
0 0 Q
0 1 0

1 0 1

1 1 ?

Building a D Flip Flop (DFF)
Step 1: Create an SR Latch
Step 2: Create a D Latch

39

DFF

R

S

D Q

C

QClk Data Q

0 0 Q

0 1 Q

1 0 0

1 1 1

Building a D Flip Flop (DFF)
Step 1: Create an SR Latch
Step 2: Create a D Latch
Step 3: Duplicate the D Latch, chain together

40

DFF

R

S

D Q

C

QR

S

D Q

C

QD

clk

Q

Takeaway

41

Set-Reset (SR) Latch can store one bit and we can change the value of the
stored bit. But, SR Latch has a forbidden state.

(Unclocked) D Latch can store and change a bit like an SR Latch while
avoiding a forbidden state.

An Edge-Triggered D Flip-Flip (aka Master-Slave D Flip-Flip) stores one bit.
The bit can be changed in a synchronized fashion on the edge of a clock
signal.

Next Goal
How do we store more than one bit, N bits?

42

43

QD

clk

Register
• D flip-flops in parallel

Registers

Registers

44

Register
• D flip-flops in parallel
• shared clock
• extra clocked inputs:

write_enable, reset, …

clk

D0

D3

D1

D2

4 4
4-bit
reg

clk

Registers

45

Register
• D flip-flops in parallel
• shared clock
• extra clocked inputs:

write_enable, reset, …

clk

D0

D3

D1

D2

64 64
64-bit

reg

clk

Takeaway
Set-Reset (SR) Latch can store one bit and we can change the value of the
stored bit. But, SR Latch has a forbidden state.

(Unclocked) D Latch can store and change a bit like an SR Latch while
avoiding a forbidden state.

An Edge-Triggered D Flip-Flip (aka Master-Slave D Flip-Flip) stores one bit.
The bit can be changed in a synchronized fashion on the edge of a clock
signal.

An N-bit register stores N-bits. It is created with N D-Flip-Flops in parallel
along with a shared clock.

46

Registers

47

Register
• D flip-flops in parallel
• shared clock
• extra clocked inputs:

write_enable, reset, …

clk

D0

D3

D1

D2

64 64
64-bit

reg

clk

Big Picture: How to Design a Processor

48

memory

inst

64

PC

2
00

new pc
calculation

register file

control

5 5 5

ALU

00: addi x5, x0, 10
04: slli x5, x5, 1
08: addi x5, x5, 15

x0x5

0

10

10
32

Reg 1
Reg 0

Reg 31
Reg 30

….DW

QA

QB

W RW RA RB

Big Picture: How to Design a Processor
Register File
• N read/write registers
• Indexed by

register number

Registers
• Numbered from 0 to 31.
• Can be referred by number: x0, x1, x2, … x31

• May also see $0, $1, $2 or r0, r1, r2

• Convention, each register also has a name:
• x16 - x23 s0-s7 ("s registers")
• x8 - x15 t0 - t7 ("t registers")

49

register file
ALU

Reg 1
Reg 0

Reg 31
Reg 30

….DW

QA

QB

W RW RA RB

00: addi x5, x0, 10
04: slli x5, x5, 2
08: addi x5, x5, 15

Big Picture: How to Design a Processor

50

memory

inst

64

PC

2
00

new pc
calculation

00: addi x5, x0, 10
04: slli x5, x5, 1
08: addi x5, x5, 15

PC is register!
• PC is the Program Counter
• Stores the memory address of the next instruction

Big Picture: How to Design a Processor

51

memory

inst

64

PC

2
00

new pc
calculation

register file

control

5 5 5

ALU

00: addi x5, x0, 10
04: slli x5, x5, 1
08: addi x5, x5, 15

32

Reg 1
Reg 0

Reg 31
Reg 30

….DW

QA

QB

W RW RA RB

Takeaway
Set-Reset (SR) Latch can store one bit and we can change the value of the
stored bit. But, SR Latch has a forbidden state.

(Unclocked) D Latch can store and change a bit like an SR Latch while
avoiding a forbidden state.

An Edge-Triggered D Flip-Flip (aka Master-Slave D Flip-Flip) stores one bit.
The bit can be changed in a synchronized fashion on the edge of a clock
signal.

An N-bit register stores N-bits. It is created with N D-Flip-Flops in parallel
along with a shared clock.

52

Summary
We store data values

• Stateful circuit elements (D Flip Flops, Registers, …)
• Clock to synchronize state changes

53

	State
	Big Picture: How to Design a Processor�
	Big Picture: How to Design a Processor�
	Big Picture: How to Design a Processor�
	Big Picture: How to Design a Processor�
	Big Picture: How to Design a Processor�
	Review
	Review
	Review
	Review
	Review
	Goal for today
	Stateful Components
	Stateful Components
	Goals for Today
	Goal
	First Attempt: Unstable Devices
	Second Attempt: Bistable Devices
	Third Attempt: Set-Reset Latch
	Third Attempt: Set-Reset Latch
	Third Attempt: Set-Reset Latch
	Takeaway
	Next Goal
	Fourth Attempt: (Unclocked) D Latch
	Takeaway
	Next Goal
	Aside: Clocks
	Clock Disciplines
	Clock Methodology
	Round 2: D Latch (1)
	Round 2: D Latch (1)
	Round 2: D Latch (1)
	Round 2: D Latch (1)
	PollEV Question
	Round 3: D Flip-Flop
	Round 3: D Flip-Flop
	iClicker Question – start here
	Building a D Flip Flop (DFF)
	Building a D Flip Flop (DFF)
	Building a D Flip Flop (DFF)
	Takeaway
	Next Goal
	Registers
	Registers
	Registers
	Takeaway
	Registers
	Big Picture: How to Design a Processor
	Big Picture: How to Design a Processor
	Big Picture: How to Design a Processor
	Big Picture: How to Design a Processor
	Takeaway
	Summary

