Arrays & Pointers

CS 3410: Computer System Organization and Programming

Spring 2025

Sy | Cornell Bowers CIS
¢ | Computer Science

[G. Guidi, A. Sampson, Z. Susag, and H. Weatherspoon]

Administrivia

» Assignments:

 AO: Infrastructure due tonight
« Slip days aren’t tracked

« A1: printf due last night; late due date Sat. (2/1)
» Slip daysaretracked

* AO/A1 Surveyout now, due Sat.

* A2:Minifloat out today!
e Due Wed. (2/5)

* Online Exercises (EGE4)due Wed. (2/5)
* Week 2 TMQIue Fri. (1/31)

Cornell Bowers C1S

¢ | Computer Science

Presenter Notes
Presentation Notes
General structure of course - new slide afterwards

Bit Packing

#include <stdio.h>
#include <stdint.h>
#include <string.h>

int main() {

uint32 t = 0x41040000;

uint32 t = & Ox007fffff; // mask to isolate mantissa
uint32_ t = (& Ox7f800000) >> 23; // bit and bit shift
uint32_ t = (& 80000000) >> 31; // mask and bit shift

printf(“s = %b, e
return 0;

%b, g = %b \n",);

ey | Cornell Bowers CIS
4@;

Computer Science

Presenter Notes
Presentation Notes
We can use a little program that reinterprets the bits it produces to a float and prints it out:

Don’t worry about the memcpy, we will learn about it later

Today’s Plan

Donald Knuth

* Arrays

* Pointers: C’s Central Construct

* Mental model ofmemory
e Pointers as addresses

* Pointers as references

e Pomter Arithmetic

* Arrays as Pointers
 Fun Pomter Tricks

Ido consider assignment
statements and pointer
variables to be among

2. ¢¢

computer science’s “most

Cornell Bowers C1S valuable treasures”.
Computer Science

&\‘\,umye'

&

& 2

L&)
S 5
Qb A

Presenter Notes
Presentation Notes
Donald Knuth
1974 Recipient of ACM Turing Award
“father of the analysis of algorithms”
Write “Art of Computer Programming (5 volumes)
Created TeX
Created literate programming
Fun fact: Knuth would pay a finder’s fee of $2.56 for any typos or mistakes in his books because “256 pennies is one dexadecimal dollar” (0x1.00 == 256)

Arrays

Cornell Bowers CIS

Computer Science

W UNIp
STooR
5 88 ’—(\
X Eg <)
) %)

Qb A

Arrays

* An array is asequenceof
same-type values that are
consecutive in memory

e Fixedsize

* C does not know the size of an
array!

Cornell Bowers GIS
Computer Science

// Declaration
int my_array([d];

// Declaration & Initialization

int my_array[4]
int my_array[4]

int my_array[]

fu2, 3, =19, 71};
10};
fu2, 3, -19, 71};

Presenter Notes
Presentation Notes
- Cannot change the size of an array after it has been declared

Demo: Arrays

1 #include <stdio.h>

2

3 int main() {

1 int courses[7] = {1110, 1111, 2110,

5 2112, 2800, 3110, 3410%;
6 int course_total = 0;

7 for (int i = 0; i < 7; +1i) {

8 course_total += courses[i];

9 ¥

10 printf("the average course is CS %d\n",
11 course_total / 7);

12 return 0;

13 }

ey | Cornell Bowers CIS
4@5

7 | Computer Science

Presenter Notes
Presentation Notes
Key points:
C does not initialize the values for you (unlike Java)
Iterate over array using indices
C does not track the size of a list

[Arrays and Pointers] sum_array.c

0 surveys completed
I

0 surveys underway

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Presenter Notes
Presentation Notes
Do not modify the notes in this section to avoid tampering with the Poll Everywhere activity.
More info at polleverywhere.com/support

[Arrays and Pointers] sum_array.c
https://www.polleverywhere.com/surveys/xtfHukkkHYphsLZSP4Fni?display_state=chart&activity_state=opened&state=opened&flow=Engagement&onscreen=persist

o

What value does the program print out?

NN]

#include <stdio.h=>

1

2

3 int sum_array(int arr[],
4 int sum = @;

5 for (int i =0
b i
4

8

9

3 1< n;
sum += arr[i];

b

return sum;

10

11 int main() {

12 int n = 5;

13 int arr[] = {3, -5, 2, 6, 1};
14 int sum = sum_array(arr, n);
15 printf("%d", sum);

16 return @;

17

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Presenter Notes
Presentation Notes
Do not modify the notes in this section to avoid tampering with the Poll Everywhere activity.
More info at polleverywhere.com/support

What value does the program print out?
https://www.polleverywhere.com/free_text_polls/rtxlCCqhsNx5XcG4X6q4m?display_state=chart&activity_state=opened&state=opened&flow=Engagement&onscreen=persist&hide=instructions

Presenter Notes
Presentation Notes
Do not modify the notes in this section to avoid tampering with the Poll Everywhere activity.
More info at polleverywhere.com/support

If we changed `n` to be 7 instead of 5, what would the program print out now, if anything?
https://www.polleverywhere.com/free_text_polls/ZYv6QrpqPepfrdhTjFomK?display_state=chart&activity_state=opened&state=opened&flow=Engagement&onscreen=persist&hide=instructions

Presenter Notes
Presentation Notes
Do not modify the notes in this section to avoid tampering with the Poll Everywhere activity.
More info at polleverywhere.com/support

If we initialized the loop variable `i` to -1 instead of 0, what would the program print out, if anything?
https://www.polleverywhere.com/free_text_polls/6kQzPfDv8KoBZjqLNeJmD?display_state=chart&activity_state=opened&state=opened&flow=Engagement&onscreen=persist&hide=instructions

Pointers

But first, memory!

Sesry | Cornell Bowers CIS

%)% | Computer Science

Simplified Computer Architecture

Processor
CPU
Runs code; does computations Can’t compute anything
Doesn’t remember anything Stores data

| Cornell Bowers CIS
w2 | Computer Science

13

Presenter Notes
Presentation Notes
This simplified presentation is essentially a Von Neumann architecture
Excluding external mass storage and input/output mechanisms
Created by John von Neumann in 1945
Can think of the different components as the “organs” of a computer
Just an abstraction: like a Turing Machine!
At the end of the day, even ChatGPT, DeepSeek still use these two components

A Mental Model of Memory

Processor Memory

uint8_t mem[SIZE];

16GB =16 X 10243 = 2% x 230 = 234
Se=ry | Cornell B CIS _
C%%ut%%iﬂence =17,179,869,184B 1

Presenter Notes
Presentation Notes
Two “organs” work together to make up for each other’s weaknesses
We prefer to say “load” in this class instead of “read” as we are putting on our architecture hats on

A Mental Model of Memory

What’s the value at

Processor address OXBC52? Memory

_t mem[SIZE];

16GB =16 X 10243 = 24 x 230 = 234
|Cornell Bowers CIS — 17.179.,869,184B §

«Z | Computer Science

CPU

Presenter Notes
Presentation Notes
Two “organs” work together to make up for each other’s weaknesses
We prefer to say “load” in this class instead of “read” as we are putting on our architecture hats on

A Mental Model of Memory

Store the value 42

Processor t address OxBC52 Memory

CPU
t mem[SIZE]
16GB = *x 230 =234
&=ty | Cornell Bowers CIS
| C[t])rgleputogesriience = 17,179,869, 184B

Presenter Notes
Presentation Notes
Two “organs” work together to make up for each other’s weaknesses
We prefer to say “load” in this class instead of “read” as we are putting on our architecture hats on

Loading a Single Byte Lint8 t mem[SIZE]
Add \":1

load, (0xBC52)

#of “

o ‘ OXxOO0F 0x02

Ox0003 OXEA

mem[OxBC52] Ox0002 Ox51
Ox0001 OxB2
Ox0000 Ox07

| Cornell Bowers CIS
w2 | Computer Science

Presenter Notes
Presentation Notes
The subscript on `load` is number of bytes to read

Connect indices to address and values to elements

Loading Multiple Bytes

uint8_t mem[SIZE]

Address Value
(uint8_t)

OxBCS52 OxBF

load,(0x0000)
OxO00F Ox02
Ox0003 OxXEA
Ox0002 Ox51
Ox0001 OxB2
OxO000 Ox07

| Cornell Bowers _
w2 | Computer Science

Presenter Notes
Presentation Notes
The subscript on `load` is number of bytes to read

Connect indices to address and values to elements

oy

What is the 4-byte integer that is loaded from memory address ~0x0000 " ?

0% 0% 0% 0%

" OxEA51B207" "Ox07B251EA” Not enough information Don't know
.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..

Presenter Notes
Presentation Notes
Do not modify the notes in this section to avoid tampering with the Poll Everywhere activity.
More info at polleverywhere.com/support

What is the 4-byte integer that is loaded from memory address `0x0000`?
https://www.polleverywhere.com/multiple_choice_polls/ExTycqDRj5qbCL235zVA6?state=opened&flow=Default&onscreen=persist

Loading Multiple Bytes

Address Value
. . uint8_t
Little -Endian ()

Leastsignificant byte at themallest address

uint8_t mem[SIZE]

OxBCS52 OxBF

load,(0x0000)
Ox000F 0x02
0x0003 EA
OxEA51B207 X Ox
. 0x0002 Ox51 ——
0x0001 OxB2
0x0000 OX07 —
| Cornell Bowers CIS

% | Computer Science

Presenter Notes
Presentation Notes
The subscript on `load` is number of bytes to read

Connect indices to address and values to elements

Loading Multiple Bytes

. . int8_t
Big-Endian uints_t)

uint8_t mem[SIZE]

Mostsignificant byte at themallest address Oy BC5; o BF
load,(0x0000)
OxO00F 0x02
Ox0003 OXEA
OxO7B251EA
I 0x0002 Ox51 -
Ox0001 OXB2 —
©x0000 x0T —

| Cornell Bowers CIS
w2 | Computer Science

Presenter Notes
Presentation Notes
The subscript on `load` is number of bytes to read

Connect indices to address and values to elements

A Pointer is An Address

* In C, all data “lives™ in memory Ox000B
. :evelzyvariable hfis c”jn address Ox000A
« & Kl s==]=F,=G=aGHEIIIG X
%K HGRI=] e9<<J=Ki& 1G9 NJA: B %0003
Ox0008
1 dint main() {
2 int x = 42; @X@@G)?\ ptr to X
3 int *ptr_to_x = &x; Ox0006 -
4 printf("x = %d is at %p\n",
5 X, ptr_to_x); ESEE 5
6 Ox0004 ?
: Ox0003 ?
9 Ox0002 ?
} return 0, Ox0001 2
Ox0000 ?

Cornell Bowers CIS

Computer Science .

‘é\‘\,umy%

&

4 2

S\
S S
Qb A

Presenter Notes
Presentation Notes
`double`, `int64_t`, `uint64_t` are all 64 bits
Everything is just bits
`%p` is the format specifier for pointers for `printf`
Mention how addresses are conventionally displayed as hexadecimal numbers

A Pointer is An Address

* In C, all data “lives” in memory Ox00OB
¢« = eveiy variable hfis c”jn address Ox000A
. & Kl@3==]=F; =Gx GEIIG b2 X

Ox0009

o %AK9 HGFI=] AR9<<J=KK: 1G9 NJA: B

1 int main() {
2 int x = U2; ptr to X
3 int *ptr_to_x = &x; Ox0006 - T
4 printf("x = %d is at %p\n",
5 X, ptr_to_x); 0x0005
6 int y = 5; Ox0004
7 int *ptr_to_y = &y;
8 printf("y = %d is at %p\n", 0x0003 y
9 y, ptr_to_y); Ox00062
} return 0; 0x0001 et
©x0000 prr_to-y

Cornell Bowers CIS

Computer Science 2

e"’“un,y‘?

%

5 2

NG
o s
Qb A

Presenter Notes
Presentation Notes
`double`, `int64_t`, `uint64_t` are all 64 bits
Everything is just bits
`%p` is the format specifier for pointers for `printf`
Mention how addresses are conventionally displayed as hexadecimal numbers

éﬁ'\‘\'uulyﬁ,

S

51 %)

) ‘::’ 5
60)
Q8 A2

Pointer Types

o . XI=IK9J=BKLI<<]J=KK=KIGE =E GJQ
« -MO'1!'Y4' 9);@i=sIM=K I A
* The pointer type tells you the type of the value which it points at
* . GKFI=JIGOF AI=?=JE A@.: =int*
o . GAI=) 1G9 SODIA? SHGALNDAE A@d.: =float*
o . GKIFIGY ; DJ9; I=INIMFE Ad.. =char*
o . GKI=) <= DI9LAF KO@=KH; = AK=FKAA-
int* Xx;
int *x; } All still pointers to afnt!
int * Xx;

Cornell Bowers CIS

Computer Science o

Presenter Notes
Presentation Notes
The pointer is an address.
The type of the pointer tells you what type of value is stored at that address

A pointer to a pointer t0... gy pyr—

* #NF HOAIFJKIN=-A E =FE J(> Ox000B
OxOO0A
Ox0009

int main() {
s 0x0007 N

int *ptr_to_x = &x; Ox0006
0X0005\
Ox0004
Ox0003
0x0002
Ox0001
Ox0000

ptr_to_x

ptr_ptr_to_x

OVoOoOJOoOho EFEFWNER

10 return 0;

N) Y N

| Cornell Bowers CIS -

Computer Science

‘;.,\"‘ UNIy€4
&
4 2
S\
S 5
Qb A

Presenter Notes
Presentation Notes
`double`, `int64_t`, `uint64_t` are all 64 bits
Everything is just bits
`%p` is the format specifier for pointers for `printf`
Mention how addresses are conventionally displayed as hexadecimal numbers

Pointers are References

 Pointers areusefubecause they

are references
o % Kl@r<=J==I=F;=GH=9IGI

* JIe=<>d

P<A"? OF<KJA?

int main() {

Voo EFEFWNER

10 return 0O;
11}

m)int x = U2;
int *ptr_to_x = &x;
int x_copy = *ptr_to_x;
*ptr_to_x = 5;

| Cornell Bowers CIS
w2 | Computer Science

Ox000B
OxO00A
Ox0009
Ox0008
Ox0007
Ox0006
Ox0005
Ox0004
Ox0003
Ox0002
Ox0001
Ox0000

ptr_to_x

X_copy

26

Presenter Notes
Presentation Notes
`double`, `int64_t`, `uint64_t` are all 64 bits
Everything is just bits
`%p` is the format specifier for pointers for `printf`
Mention how addresses are conventionally displayed as hexadecimal numbers

Demo: Pointers as References

1 #include <stdio.h>

2

3 int main() {

4 int x = 34;

5 int y = 10;

6

7 int *ptr = &x;

8

9 printf("0: x = %d and yv = %d and ptr = %p\n", x, vy, ptr);
10 *ptr = Ui,

11 printf("1l: x = %d and yv = %d and ptr = %p\n", x, vy, ptr);
12 ptr = &y,

13 printf("2: x = %d and yv = %d and ptr = %p\n", x, vy, ptr);
14 *ptr = 20;

15 printf("3: x = %d and yv = %d and ptr = %p\n", x, vy, ptr);
16

17 return 0O;

18 }

Cornell Bowers CIS

Computer Science

Presenter Notes
Presentation Notes
```
#include <stdio.h>

int main() {
    int x = 34;
    int y = 10;

    int* ptr = &x;

    printf("0: x = %d and y = %d and ptr = %p\n", x, y, ptr);
    *ptr = 41;
    printf("1: x = %d and y = %d and ptr = %p\n", x, y, ptr);
    ptr = &y;
    printf("2: x = %d and y = %d and ptr = %p\n", x, y, ptr);
    *ptr = 20;
    printf("3: x = %d and y = %d and ptr = %p\n", x, y, ptr);

    return 0;
}
```
Modifying `*ptr` changes the value of `x`, not the value of `ptr`.
Modifying `ptr` just changes the address which `ptr` points to; it doesn’t touch `x` or `y` at all.
You use references all the time without knowing it!

" Poll Everywhere

What arethe 3. *p
values of: L. *q

1.a 5. **%r
2.b

int main() {
uint8_t a
uint8_t b ;
uint8_t *p = &a
uint8_t *q = &b
uint8_t **r = &p;
)k = 1@;

0;
1.

I
I

VooJohor EWNK

*p = 11;
10 return 0O;
11}

Gornell Bowers C1S
“&y | Computer Science

https://pollev.com/zacharysusag306

Presenter Notes
Presentation Notes
a = 10
b = 11
*p = 11
*q = 11
**r = 11

.

Poll Everywhere

What are the

values of:
1.a
2.b

3.%p

L. *q

5. %%

int main() {
m)uint8_t a
uint8_t b
uint8_t *p =
uint8_t *q = b
uint8_t #**r = &p,
**r = 10;

I
I
&a
&

Voo FEFWNPR

10 return 0O;

' | Cornell Bowers CIS
% | Computer Science

Ox000B
OxO00A
Ox0009
Ox0008
Ox0007
Ox0006
Ox0005
Ox0004
Ox0003
Ox0002
Ox0001
Ox0000

29

Presenter Notes
Presentation Notes
a = 10
b = 11
*p = 11
*q = 11
**r = 11

.

Poll Everywhere

What are the

values of:
1.a
2.b

3.%p

L. *q

5. %%

int main() {
m)uint8_t a
uint8_t b
uint8_t *p =
uint8_t *q = b
uint8_t #**r = &p,
**r = 10;

I
I
&a
&

Voo FEFWNPR

10 return 0O;

' | Cornell Bowers CIS
% | Computer Science

Ox000B
OxO00A
Ox0009
Ox0008
Ox0007
Ox0006
Ox0005
Ox0004
Ox0003
Ox0002
Ox0001
Ox0000

0

a

30

Presenter Notes
Presentation Notes
a = 10
b = 11
*p = 11
*q = 11
**r = 11

.

Poll Everywhere

What are the

values of:
1.a
2.b

3.%p

L. *q

5. %%

int main() {
uint8_t a
mpuint8_t b
uint8_t *p =
uint8_t *q = b
uint8_t #**r = &p,
**r = 10;

I
I

&a
&

Voo FEFWNPR

10 return 0O;

' | Cornell Bowers CIS
% | Computer Science

Ox000B
OxO00A
Ox0009
Ox0008
Ox0007
Ox0006
Ox0005
Ox0004
Ox0003
Ox0002
Ox0001
Ox0000

0
1

a
b

31

Presenter Notes
Presentation Notes
a = 10
b = 11
*p = 11
*q = 11
**r = 11

.

Poll Everywhere

What are the

values of:
1.a
2.b

3.%p

L. *q

5. %%

int main() {
uint8_t a ;
uint8_t b ;
m)uint8_t *p = &a
uint8_t *q = &b
uint8_t **r = &p;
**r = 10;

0,
1,

Voo FEFWNPR

10 return 0O;

' | Cornell Bowers CIS
% | Computer Science

Ox000B
OxO00A
Ox0009
Ox0008
Ox0007
Ox0006
Ox0005
Ox0004
Ox0003
Ox0002
Ox0001
Ox0000

0
1

Ox000B

a
b

P

32

Presenter Notes
Presentation Notes
a = 10
b = 11
*p = 11
*q = 11
**r = 11

.

Poll Everywhere

What are the

values of:
1.a
2.b

3.%p

L. *q

5. %%

int main() §
uint8_t a
uint8_t b ;
uint8_t *p = &a;
mm)uint8_t *q = &b;
uint8_t **r = &p;
**r = 10;

0
1

Voo FEFWNPR

10 return 0O;

' | Cornell Bowers CIS
% | Computer Science

Ox000B
OxO00A
Ox0009
Ox0008
Ox0007
Ox0006
Ox0005
Ox0004
Ox0003
Ox0002
Ox0001
Ox0000

0
1

Ox000B

OxO00A

a
b

P

g

33

Presenter Notes
Presentation Notes
a = 10
b = 11
*p = 11
*q = 11
**r = 11

.

Poll Everywhere

What are the

values of:
1.a
2.b

3.%p
L. *q
5. %%

int main() {
uint8_t a
uint8_t b ;
uint8_t *p = &a;
uint8_t *q = &b;
m)uint8_t **r = &p;
**r = 10;

0
1

Voo FEFWNPR

10 return 0O;

' | Cornell Bowers CIS
% | Computer Science

Ox000B
OxO00A
Ox0009

Ox0007
Ox0006
Ox0005
Ox0004
Ox0003
Ox0002
Ox0001
Ox0000

0
1

Ox000B

OxO00A

S Y

g

34

Presenter Notes
Presentation Notes
a = 10
b = 11
*p = 11
*q = 11
**r = 11

.

Poll Everywhere

What are the

values of:
1.a
2.b

3.%p
L. *q
5. %%

int main() {
uint8_t a
uint8_t b ;
uint8_t *p = &a;
uint8_t *q = &b;
uint8_t **r = &p;
ﬂ**r = 10

0
1

Voo FEFWNPR

10 return 0O;
11

' | Cornell Bowers CIS
% | Computer Science

Ox000B
OxO00A
Ox0009

Ox0007
Ox0006
Ox0005
Ox0004
Ox0003
Ox0002
Ox0001
Ox0000

10
1

Ox000B

OxO00A

S Y

g

35

Presenter Notes
Presentation Notes
a = 10
b = 11
*p = 11
*q = 11
**r = 11

.

Poll Everywhere

What are the

values of:
1.a
2.b

3.%p
L. *q
5. %%

int main() §
uint8_t a
uint8_t b ;
uint8_t *p = &a;
uint8_t *q = &b;
uint8_t **r = &p;

0
1

Voo FEFWNPR

10 return 0O;

' | Cornell Bowers CIS
% | Computer Science

Ox000B
OxO00A
Ox0009

Ox0007
Ox0006
Ox0005
Ox0004
Ox0003
Ox0002
Ox0001
Ox0000

10
1

OxO00A

OxO00A

S Y

g

36

Presenter Notes
Presentation Notes
a = 10
b = 11
*p = 11
*q = 11
**r = 11

.

Poll Everywhere

What are the

values of:
1.a
2.b

3.%p
L. *q
5. %%

int main() §
uint8_t a
uint8_t b ;
uint8_t *p = &a;
uint8_t *q = &b;
uint8_t **r = &p;
**r = 10;
*r = q,
) xp = 11;

10 return 0O;

0
1

Voo FEFWNPR

' | Cornell Bowers CIS
% | Computer Science

Ox000B
OxO00A
Ox0009

Ox0007
Ox0006
Ox0005
Ox0004
Ox0003
Ox0002
Ox0001
Ox0000

10
11

OxO00A

OxO00A

S Y

g

37

Presenter Notes
Presentation Notes
a = 10
b = 11
*p = 11
*q = 11
**r = 11

Arrays as Pointers

An array is asequenceof same- Ox000B
type values that are consecutive in Ox000A
memory. arr[2]
Ox00069
51 Ox0008
1 int main
2 int arr[3] = {42, -839, 1000}; Ox0007
3
4 printf("first element is at %p\n", Ox0006 arr[l]
5 Sarr[0]); Ox0005
6 printf("second element is at %p\n",
7 Sarr[1]1); OxO0004
8 printf("third element is at %p\n",
9 sarr[2]): Ox0003
10 return 0; Ox00P2 [@]
arr
S Ox0001
Ox0000

| Cornell Bowers CIS »

Computer Science

e"’“un,y‘?

%

5 2

NG
S %)
Qb A

Presenter Notes
Presentation Notes
Remember that `int`s are 4 bytes, so the memory address increases by 4 each time
Memory is contiguous.

Arrays as Pointers

An array is asequenceof same- Ox000B
type values that are consecutive in Ox000A ']
1000 arr
memory. Ox0009
51 Ox0008
1 int main
2 int arr[3] = {42, -839, 1000}; Ox0007
3
4 printf("first element is at %p\n", Ox0006 -839 arr[l]
5 (&a.rr[O]); . Ox0005
6 printf("second element is at %p\n",
7 Sarr[1]1); OxO0004
8 printf("third element is at %p\n",
9 sarr[2]): Ox0003
10 return 0; Ox00P2 05 [@]
rr
— 0x0001 2
Ox0000

| Cornell Bowers CIS ”

Computer Science

e"’“un,y‘?

%

5 2

NG
S %)
Qb A

Presenter Notes
Presentation Notes
Remember that `int`s are 4 bytes, so the memory address increases by 4 each time
Memory is contiguous.

Formula for address of an element at index i

Base Address
(1e.,address of

first element)

b+s-i

Size of elements,

in bytes

¢resry | Comell Bowers CIS
% | Computer Science

Arrays as Pointers to the First Element

#include <stdio.h>

int main() {
int courses[7] = {1110, 1111, 2110, 2112, 2800, 3110, 3410};

printf("first element is at %p\n", &courses[0]);
printf("the array itself is %p\n", courses);

O 00 I O O EF W NP

return 0; courses and &courses[0] point to
10 } the same address!

Sy | Cornell Bowers CIS

¢ | Computer Science

Presenter Notes
Presentation Notes
- &courses[0] = courses

Passing Arrays to Functions

1 int sum_n(int =*v in n

S i t;t; i O;als' ot * C does not store the length of
3 for (int i = 0; i < count; +i) { an array!

1 total += vals[i]; * You must pass the length
5 } alongside the array

6 return total;

7 %

8 int main() {

9 int courses[7] = {1110, 1111, 2110, 2112, 2800, 3110, 3410%};

10 int sum = sum_n(courses, 7);

11 printf("the average course is CS %d\n",

12 sum / 7);

13 return 0;

14}

Cornell Bowers CIS

Computer Science 42

e"'“umy%

%

3’ 2

Q ‘:J 2
60)
Q8 A2

Presenter Notes
Presentation Notes
You can pass an array to a function as a pointer-typed argument
We pass in the length of the array as well so we know when to stop iterating

: - - Question:
Pointer Arithmetic Can we compute
1 void experiment(int* courses) { addresses ourselves?
2 printf("courses = %p\n", courses);
3 printf("courses + 1 = %p\n", courses + 1);
4}
5
6 int main() {
7 int courses[7] = {1116, 1111, 2110, 2112, 2800, 3110, 3u410}:
8 experiment(courses);
9 return O; $./a.out
10} courses 0x1555d56bb0

courses + 1 Ox1555d56bbu

Sy | Cornell Bowers CIS

¢ | Computer Science

Presenter Notes
Presentation Notes
Copy into file and run
Adding 1 to `courses` increases its value by 4, not 1.

Pointer Arithmetic Rule

*In C, pointer arithmetic "moves” pointers by
elementsized chunks
* Element size 1s determined by pointer type

courses hastype 1nt
* Element size 1s 4 bytes

* Example:
e courses + n 9<<K 4 X n : Q=KIGI<<J=KKG>
courses

Sesry | Cornell Bowers CIS

%2 | Computer Science

Dereferencing Elements of an Array

1 void experiment(int* courses) {

2 printf("courses[0] = %d\n", *(courses + 0));

3 printf("courses[5] = %d\n", *(courses + 5));

4}

S

6 int main() {

7 int courses[7] = {1110, 1111, 2110, 2112, 2800, 3110, 3410}:
8 experiment(courses);

9 return O; $./a.out

10 ; courses[0]

courses[5]

Sy | Cornell Bowers CIS

¢ | Computer Science

	Arrays & Pointers
	Administrivia
	Bit Packing
	Today’s Plan
	Arrays
	Arrays
	Demo: Arrays
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Pointers
	Simplified Computer Architecture
	A Mental Model of Memory
	A Mental Model of Memory
	A Mental Model of Memory
	Loading a Single Byte
	Loading Multiple Bytes
	Slide Number 19
	Loading Multiple Bytes
	Loading Multiple Bytes
	A Pointer is An Address
	A Pointer is An Address
	Pointer Types
	A pointer to a pointer to…
	Pointers are References
	Demo: Pointers as References
	Poll Everywhere
	Poll Everywhere
	Poll Everywhere
	Poll Everywhere
	Poll Everywhere
	Poll Everywhere
	Poll Everywhere
	Poll Everywhere
	Poll Everywhere
	Poll Everywhere
	Arrays as Pointers
	Arrays as Pointers
	Formula for address of an element at index 𝑖
	Arrays as Pointers to the First Element
	Passing Arrays to Functions
	Pointer Arithmetic
	Pointer Arithmetic Rule
	Dereferencing Elements of an Array

