
Arrays & Pointers
CS 3410: Computer System Organization and Programming

Spring 2025

[G. Guidi, A. Sampson, Z. Susag, and H. Weatherspoon]

Administrivia
• Assignments:

• A0: Infrastructure due tonight
• Slip days aren’t tracked

• A1: printf due last night; late due date Sat. (2/1)
• Slip days are tracked

• A0/A1 Survey out now, due Sat.
• A2: Minifloat out today!

• Due Wed. (2/5)

• Online Exercises (E0-E4) due Wed. (2/5)
• Week 2 TMQ due Fri. (1/31)

2

Presenter Notes
Presentation Notes
General structure of course - new slide afterwards

Bit Packing
#include <stdio.h>
#include <stdint.h>
#include <string.h>

int main() {
 uint32_t bits = 0x41040000;
 uint32_t mantissa = bits & 0x007fffff; // mask to isolate mantissa
 uint32_t exponent = (bits & 0x7f800000) >> 23; // bit and bit shift
 uint32_t sign = (bits & 80000000) >> 31; // mask and bit shift

 printf(“s = %b, e = %b, g = %b \n", sign, exponent, mantissa);
 return 0;
}

3

Presenter Notes
Presentation Notes
We can use a little program that reinterprets the bits it produces to a float and prints it out:

Don’t worry about the memcpy, we will learn about it later

Today’s Plan
• Arrays
• Pointers: C’s Central Construct

• Mental model of memory
• Pointers as addresses
• Pointers as references
• Pointer Arithmetic
• Arrays as Pointers
• Fun Pointer Tricks

4

Donald Knuth

I do consider assignment
statements and pointer
variables to be among

computer science’s “most
valuable treasures”.

Presenter Notes
Presentation Notes
Donald Knuth
1974 Recipient of ACM Turing Award
“father of the analysis of algorithms”
Write “Art of Computer Programming (5 volumes)
Created TeX
Created literate programming
Fun fact: Knuth would pay a finder’s fee of $2.56 for any typos or mistakes in his books because “256 pennies is one dexadecimal dollar” (0x1.00 == 256)

Arrays

5

Arrays
• An array is a sequence of

same-type values that are
consecutive in memory

• Fixed-size
• C does not know the size of an

array!

/[Declaration
int my_array[4];

/[Declaration & Initialization
int my_array[4] = {42, 3, -19, 71};
int my_array[4] = {0};
int my_array[] = {42, 3, -19, 71};

6

Presenter Notes
Presentation Notes
- Cannot change the size of an array after it has been declared

Demo: Arrays
1 #include <stdio.h>
2
3 int main() {
4 int courses[7] = {1110, 1111, 2110,
5 2112, 2800, 3110, 3410};
6 int course_total = 0;
7 for (int i = 0; i < 7; +[i) {
8 course_total += courses[i];
9 }
10 printf("the average course is CS %d\n",
11 course_total / 7);
12 return 0;
13 }

7

Presenter Notes
Presentation Notes
Key points:
C does not initialize the values for you (unlike Java)
Iterate over array using indices
C does not track the size of a list

Presenter Notes
Presentation Notes
Do not modify the notes in this section to avoid tampering with the Poll Everywhere activity.
More info at polleverywhere.com/support

[Arrays and Pointers] sum_array.c
https://www.polleverywhere.com/surveys/xtfHukkkHYphsLZSP4Fni?display_state=chart&activity_state=opened&state=opened&flow=Engagement&onscreen=persist

Presenter Notes
Presentation Notes
Do not modify the notes in this section to avoid tampering with the Poll Everywhere activity.
More info at polleverywhere.com/support

What value does the program print out?
https://www.polleverywhere.com/free_text_polls/rtxlCCqhsNx5XcG4X6q4m?display_state=chart&activity_state=opened&state=opened&flow=Engagement&onscreen=persist&hide=instructions

Presenter Notes
Presentation Notes
Do not modify the notes in this section to avoid tampering with the Poll Everywhere activity.
More info at polleverywhere.com/support

If we changed `n` to be 7 instead of 5, what would the program print out now, if anything?
https://www.polleverywhere.com/free_text_polls/ZYv6QrpqPepfrdhTjFomK?display_state=chart&activity_state=opened&state=opened&flow=Engagement&onscreen=persist&hide=instructions

Presenter Notes
Presentation Notes
Do not modify the notes in this section to avoid tampering with the Poll Everywhere activity.
More info at polleverywhere.com/support

If we initialized the loop variable `i` to -1 instead of 0, what would the program print out, if anything?
https://www.polleverywhere.com/free_text_polls/6kQzPfDv8KoBZjqLNeJmD?display_state=chart&activity_state=opened&state=opened&flow=Engagement&onscreen=persist&hide=instructions

Pointers
But first, memory!

12

13

Simplified Computer Architecture
Processor Memory

Stores data

Runs code; does computations

Doesn’t remember anything

CPU

Can’t compute anything

Presenter Notes
Presentation Notes
This simplified presentation is essentially a Von Neumann architecture
Excluding external mass storage and input/output mechanisms
Created by John von Neumann in 1945
Can think of the different components as the “organs” of a computer
Just an abstraction: like a Turing Machine!
At the end of the day, even ChatGPT, DeepSeek still use these two components

A Mental Model of Memory

14

Processor Memory

CPU

uint8_t mem[SIZE];
16GB = 16 × 10243 = 24 × 230 = 234
= 17,179,869,184B

Presenter Notes
Presentation Notes
Two “organs” work together to make up for each other’s weaknesses
We prefer to say “load” in this class instead of “read” as we are putting on our architecture hats on

A Mental Model of Memory

15

Processor Memory

CPU

uint8_t mem[SIZE];
16GB = 16 × 10243 = 24 × 230 = 234
= 17,179,869,184B

What’s the value at
address 0xBC52?

mem[0xBC52]

Presenter Notes
Presentation Notes
Two “organs” work together to make up for each other’s weaknesses
We prefer to say “load” in this class instead of “read” as we are putting on our architecture hats on

A Mental Model of Memory

16

Processor Memory

CPU

uint8_t mem[SIZE];
16GB = 16 × 10243 = 24 × 230 = 234
= 17,179,869,184B

Store the value 42
at address 0xBC52

mem[0xBC52] = 42;

Presenter Notes
Presentation Notes
Two “organs” work together to make up for each other’s weaknesses
We prefer to say “load” in this class instead of “read” as we are putting on our architecture hats on

Loading a Single Byte
Address Value

(uint8_t)
… …

0xBC52 0xBF
… …

0x000F 0x02
…

0x0003 0xEA
0x0002 0x51
0x0001 0xB2
0x0000 0x07

17

load1 0xBC52 = 0xBF
of

bytes

uint8_t mem[SIZE]

mem[0xBC52]

Presenter Notes
Presentation Notes
The subscript on `load` is number of bytes to read

Connect indices to address and values to elements

Loading Multiple Bytes
Address Value

(uint8_t)
… …

0xBC52 0xBF
… …

0x000F 0x02
…

0x0003 0xEA
0x0002 0x51
0x0001 0xB2
0x0000 0x07

18

load4 0x0000

uint8_t mem[SIZE]

=
0x________

https://pollev.com/zacharysusag306

Presenter Notes
Presentation Notes
The subscript on `load` is number of bytes to read

Connect indices to address and values to elements

19

Presenter Notes
Presentation Notes
Do not modify the notes in this section to avoid tampering with the Poll Everywhere activity.
More info at polleverywhere.com/support

What is the 4-byte integer that is loaded from memory address `0x0000`?
https://www.polleverywhere.com/multiple_choice_polls/ExTycqDRj5qbCL235zVA6?state=opened&flow=Default&onscreen=persist

Loading Multiple Bytes
Address Value

(uint8_t)
… …

0xBC52 0xBF
… …

0x000F 0x02
…

0x0003 0xEA
0x0002 0x51
0x0001 0xB2
0x0000 0x07

20

load4 0x0000

uint8_t mem[SIZE]

=
0x________

Little -Endian
Least significant byte at the smallest address

0xEA51B207

Presenter Notes
Presentation Notes
The subscript on `load` is number of bytes to read

Connect indices to address and values to elements

Loading Multiple Bytes
Address Value

(uint8_t)
… …

0xBC52 0xBF
… …

0x000F 0x02
…

0x0003 0xEA
0x0002 0x51
0x0001 0xB2
0x0000 0x07

21

load4 0x0000

uint8_t mem[SIZE]

=
0x________

Big-Endian
Most significant byte at the smallest address

0x07B251EA

Presenter Notes
Presentation Notes
The subscript on `load` is number of bytes to read

Connect indices to address and values to elements

A Pointer is An Address
• In C, all data “lives” in memory

• ⇒ every variable has an address
• & AK� L@=� ;J=>=J=Fڅ �څ<Gڌ= GH=J9LGJ

• %=LK� 9� HGAFL=J� �ڂڂ=ڂAښ 9<<J=KKښ� � LG� 9� N9JA9: D=

22

1 int main() {
2 int x = 42;
3 int *ptr_to_x = &x;
4 printf("x = %d is at %p\n",
5 x, ptr_to_x);
6
7
8
9

10 return 0;
11 }

Address Value
0x000B

42
0x000A
0x0009
0x0008
0x0007

0x0008
0x0006
0x0005 ?
0x0004 ?
0x0003 ?
0x0002 ?
0x0001 ?
0x0000 ?

x

ptr_to_x

Presenter Notes
Presentation Notes
`double`, `int64_t`, `uint64_t` are all 64 bits
Everything is just bits
`%p` is the format specifier for pointers for `printf`
Mention how addresses are conventionally displayed as hexadecimal numbers

A Pointer is An Address
• In C, all data “lives” in memory

• ⇒ every variable has an address
• & AK� L@=� ;J=>=J=Fڅ �څ<Gڌ= GH=J9LGJ

• %=LK� 9� HGAFL=J� �ڂڂ=ڂAښ 9<<J=KKښ� � LG� 9� N9JA9: D=

23

1 int main() {
2 int x = 42;
3 int *ptr_to_x = &x;
4 printf("x = %d is at %p\n",
5 x, ptr_to_x);
6 int y = 5;
7 int *ptr_to_y = &y;
8 printf("y = %d is at %p\n",
9 y, ptr_to_y);

10 return 0;
11 }

Address Value
0x000B

42
0x000A
0x0009
0x0008
0x0007

0x0008
0x0006
0x0005

5
0x0004
0x0003
0x0002
0x0001

0x0002
0x0000

x

ptr_to_x

y

ptr_to_y

Presenter Notes
Presentation Notes
`double`, `int64_t`, `uint64_t` are all 64 bits
Everything is just bits
`%p` is the format specifier for pointers for `printf`
Mention how addresses are conventionally displayed as hexadecimal numbers

Pointer Types
• . GAFL=JK� 9J=� BMKL� 9<<J=KK=K� LG� E =E GJQ

• - MJ� 0'1! �4ڌ ٰ ٴ � 9J; @AL=; LMJ=� AK� ٰ ٴ :ڌ AL
• The pointer type tells you the type of the value which it points at

• . GAFL=J� LG� 9F� AFL=?=J� E A?@L� : =� int*
• . GAFL=J� LG� 9� >DG9LAF?ڌHGAFL� N9DM=� E A?@L� : =� float*
• . GAFL=J� LG� 9� ; @9J9; L=J� N9DM=� E A?@L� : =� char*

• . GAFL=J� <=; D9J9LAGF� AK� O@AL=KH9; =� AFK=FKALAN=
int* x;
int *x;
int * x;

24

All still pointers to an int!

Presenter Notes
Presentation Notes
The pointer is an address.
The type of the pointer tells you what type of value is stored at that address

A pointer to a pointer to…
• #N=F� HGAFL=JK� DAN=� AF� E =E GJQڃ

25

1 int main() {
2 int x = 42;
3 int *ptr_to_x = &x;
4 int *[ptr_ptr_to_x = &ptr_to_x;
5
6
7
8
9

10 return 0;
11 }

Address Value
0x000B

42
0x000A
0x0009
0x0008
0x0007

0x0008
0x0006
0x0005

0x0006
0x0004
0x0003 ?
0x0002 ?
0x0001 ?
0x0000 ?

x

ptr_to_x

ptr_ptr_to_x

Presenter Notes
Presentation Notes
`double`, `int64_t`, `uint64_t` are all 64 bits
Everything is just bits
`%p` is the format specifier for pointers for `printf`
Mention how addresses are conventionally displayed as hexadecimal numbers

Pointers are References
• Pointers are useful because they

are references
• * AK� L@=� <=J=>=J=F; =� GH=J9LGJ

• 3 K=<� >GJ� DG9<AF?� 9F<� KLGJAF?

26

1 int main() {
2 int x = 42;
3 int *ptr_to_x = &x;
4 int x_copy = *ptr_to_x;
5 *ptr_to_x = 5;
6
7
8
9

10 return 0;
11 }

Address Value
0x000B

42
0x000A
0x0009
0x0008
0x0007

0x0008
0x0006
0x0005

42
0x0004
0x0003
0x0002
0x0001 ?
0x0000 ?

x

ptr_to_x

x_copy

5

Presenter Notes
Presentation Notes
`double`, `int64_t`, `uint64_t` are all 64 bits
Everything is just bits
`%p` is the format specifier for pointers for `printf`
Mention how addresses are conventionally displayed as hexadecimal numbers

Demo: Pointers as References
1 #include <stdio.h>
2
3 int main() {
4 int x = 34;
5 int y = 10;
6
7 int *ptr = &x;
8
9 printf("0: x = %d and y = %d and ptr = %p\n", x, y, ptr);
10 *ptr = 41;
11 printf("1: x = %d and y = %d and ptr = %p\n", x, y, ptr);
12 ptr = &y;
13 printf("2: x = %d and y = %d and ptr = %p\n", x, y, ptr);
14 *ptr = 20;
15 printf("3: x = %d and y = %d and ptr = %p\n", x, y, ptr);
16
17 return 0;
18 }

27

Presenter Notes
Presentation Notes
```
#include <stdio.h>

int main() {
    int x = 34;
    int y = 10;

    int* ptr = &x;

    printf("0: x = %d and y = %d and ptr = %p\n", x, y, ptr);
    *ptr = 41;
    printf("1: x = %d and y = %d and ptr = %p\n", x, y, ptr);
    ptr = &y;
    printf("2: x = %d and y = %d and ptr = %p\n", x, y, ptr);
    *ptr = 20;
    printf("3: x = %d and y = %d and ptr = %p\n", x, y, ptr);

    return 0;
}
```
Modifying `*ptr` changes the value of `x`, not the value of `ptr`.
Modifying `ptr` just changes the address which `ptr` points to; it doesn’t touch `x` or `y` at all.
You use references all the time without knowing it!

Poll Everywhere
What are the
values of:

1. a
2. b

3. *p
4. *q
5. *[r

28

1 int main() {
2 uint8_t a = 0;
3 uint8_t b = 1;
4 uint8_t *p = &a;
5 uint8_t *q = &b;
6 uint8_t *[r = &p;
7 *[r = 10;
8 *r = q;
9 *p = 11;

10 return 0;
11 }

Address Value
0x000B

42
0x000A
0x0009
0x0008
0x0007

0x0008
0x0006
0x0005

42
0x0004
0x0003
0x0002
0x0001 ?
0x0000 ?

x

ptr_to_x

x_copy

5

https://pollev.com/zacharysusag306

Presenter Notes
Presentation Notes
a = 10
b = 11
*p = 11
*q = 11
**r = 11

Poll Everywhere
What are the
values of:

1. a
2. b

3. *p
4. *q
5. *[r

29

1 int main() {
2 uint8_t a = 0;
3 uint8_t b = 1;
4 uint8_t *p = &a;
5 uint8_t *q = &b;
6 uint8_t *[r = &p;
7 *[r = 10;
8 *r = q;
9 *p = 11;

10 return 0;
11 }

Address Value
0x000B
0x000A
0x0009
0x0008
0x0007
0x0006
0x0005
0x0004
0x0003
0x0002
0x0001
0x0000

Presenter Notes
Presentation Notes
a = 10
b = 11
*p = 11
*q = 11
**r = 11

Poll Everywhere
What are the
values of:

1. a
2. b

3. *p
4. *q
5. *[r

30

1 int main() {
2 uint8_t a = 0;
3 uint8_t b = 1;
4 uint8_t *p = &a;
5 uint8_t *q = &b;
6 uint8_t *[r = &p;
7 *[r = 10;
8 *r = q;
9 *p = 11;

10 return 0;
11 }

Address Value
0x000B 0
0x000A
0x0009
0x0008
0x0007
0x0006
0x0005
0x0004
0x0003
0x0002
0x0001
0x0000

a

Presenter Notes
Presentation Notes
a = 10
b = 11
*p = 11
*q = 11
**r = 11

Poll Everywhere
What are the
values of:

1. a
2. b

3. *p
4. *q
5. *[r

31

1 int main() {
2 uint8_t a = 0;
3 uint8_t b = 1;
4 uint8_t *p = &a;
5 uint8_t *q = &b;
6 uint8_t *[r = &p;
7 *[r = 10;
8 *r = q;
9 *p = 11;

10 return 0;
11 }

Address Value
0x000B 0
0x000A 1
0x0009
0x0008
0x0007
0x0006
0x0005
0x0004
0x0003
0x0002
0x0001
0x0000

a
b

Presenter Notes
Presentation Notes
a = 10
b = 11
*p = 11
*q = 11
**r = 11

Poll Everywhere
What are the
values of:

1. a
2. b

3. *p
4. *q
5. *[r

32

1 int main() {
2 uint8_t a = 0;
3 uint8_t b = 1;
4 uint8_t *p = &a;
5 uint8_t *q = &b;
6 uint8_t *[r = &p;
7 *[r = 10;
8 *r = q;
9 *p = 11;

10 return 0;
11 }

Address Value
0x000B 0
0x000A 1
0x0009

0x000B
0x0008
0x0007
0x0006
0x0005
0x0004
0x0003
0x0002
0x0001
0x0000

a
b

p

Presenter Notes
Presentation Notes
a = 10
b = 11
*p = 11
*q = 11
**r = 11

Poll Everywhere
What are the
values of:

1. a
2. b

3. *p
4. *q
5. *[r

33

1 int main() {
2 uint8_t a = 0;
3 uint8_t b = 1;
4 uint8_t *p = &a;
5 uint8_t *q = &b;
6 uint8_t *[r = &p;
7 *[r = 10;
8 *r = q;
9 *p = 11;

10 return 0;
11 }

Address Value
0x000B 0
0x000A 1
0x0009

0x000B
0x0008
0x0007

0x000A
0x0006
0x0005
0x0004
0x0003
0x0002
0x0001
0x0000

a
b

p

q

Presenter Notes
Presentation Notes
a = 10
b = 11
*p = 11
*q = 11
**r = 11

Poll Everywhere
What are the
values of:

1. a
2. b

3. *p
4. *q
5. *[r

34

1 int main() {
2 uint8_t a = 0;
3 uint8_t b = 1;
4 uint8_t *p = &a;
5 uint8_t *q = &b;
6 uint8_t *[r = &p;
7 *[r = 10;
8 *r = q;
9 *p = 11;

10 return 0;
11 }

Address Value
0x000B 0
0x000A 1
0x0009

0x000B
0x0008
0x0007

0x000A
0x0006
0x0005

0x0008
0x0004
0x0003
0x0002
0x0001
0x0000

a
b

p

q

r

Presenter Notes
Presentation Notes
a = 10
b = 11
*p = 11
*q = 11
**r = 11

Poll Everywhere
What are the
values of:

1. a
2. b

3. *p
4. *q
5. *[r

35

1 int main() {
2 uint8_t a = 0;
3 uint8_t b = 1;
4 uint8_t *p = &a;
5 uint8_t *q = &b;
6 uint8_t *[r = &p;
7 *[r = 10;
8 *r = q;
9 *p = 11;

10 return 0;
11 }

Address Value
0x000B 10
0x000A 1
0x0009

0x000B
0x0008
0x0007

0x000A
0x0006
0x0005

0x0008
0x0004
0x0003
0x0002
0x0001
0x0000

a
b

p

q

r

Presenter Notes
Presentation Notes
a = 10
b = 11
*p = 11
*q = 11
**r = 11

Poll Everywhere
What are the
values of:

1. a
2. b

3. *p
4. *q
5. *[r

36

1 int main() {
2 uint8_t a = 0;
3 uint8_t b = 1;
4 uint8_t *p = &a;
5 uint8_t *q = &b;
6 uint8_t *[r = &p;
7 *[r = 10;
8 *r = q;
9 *p = 11;

10 return 0;
11 }

Address Value
0x000B 10
0x000A 1
0x0009

0x000A
0x0008
0x0007

0x000A
0x0006
0x0005

0x0008
0x0004
0x0003
0x0002
0x0001
0x0000

a
b

p

q

r

Presenter Notes
Presentation Notes
a = 10
b = 11
*p = 11
*q = 11
**r = 11

Poll Everywhere
What are the
values of:

1. a
2. b

3. *p
4. *q
5. *[r

37

1 int main() {
2 uint8_t a = 0;
3 uint8_t b = 1;
4 uint8_t *p = &a;
5 uint8_t *q = &b;
6 uint8_t *[r = &p;
7 *[r = 10;
8 *r = q;
9 *p = 11;

10 return 0;
11 }

Address Value
0x000B 10
0x000A 11
0x0009

0x000A
0x0008
0x0007

0x000A
0x0006
0x0005

0x0008
0x0004
0x0003
0x0002
0x0001
0x0000

a
b

p

q

r

Presenter Notes
Presentation Notes
a = 10
b = 11
*p = 11
*q = 11
**r = 11

Arrays as Pointers

38

1 int main() {
2 int arr[3] = {42, -839, 1000};
3
4 printf("first element is at %p\n",
5 &arr[0]);
6 printf("second element is at %p\n",
7 &arr[1]);
8 printf("third element is at %p\n",
9 &arr[2]);
10 return 0;
11 }

Address Value
0x000B

1000
0x000A
0x0009
0x0008
0x0007

-839
0x0006
0x0005
0x0004
0x0003

42
0x0002
0x0001
0x0000

arr[2]

An array is a sequence of same-
type values that are consecutive in
memory.

arr[1]

arr[0]

Presenter Notes
Presentation Notes
Remember that `int`s are 4 bytes, so the memory address increases by 4 each time
Memory is contiguous.

Arrays as Pointers

39

1 int main() {
2 int arr[3] = {42, -839, 1000};
3
4 printf("first element is at %p\n",
5 &arr[0]);
6 printf("second element is at %p\n",
7 &arr[1]);
8 printf("third element is at %p\n",
9 &arr[2]);
10 return 0;
11 }

Address Value
0x000B

1000
0x000A
0x0009
0x0008
0x0007

-839
0x0006
0x0005
0x0004
0x0003

42
0x0002
0x0001
0x0000

arr[2]

An array is a sequence of same-
type values that are consecutive in
memory.

arr[1]

arr[0]

Presenter Notes
Presentation Notes
Remember that `int`s are 4 bytes, so the memory address increases by 4 each time
Memory is contiguous.

Formula for address of an element at index 𝑖𝑖

40

𝑏𝑏 + 𝑠𝑠 � 𝑖𝑖

Base Address
(i.e., address of
first element)

Size of elements,
in bytes

Index

Arrays as Pointers to the First Element
1 #include <stdio.h>
2
3 int main() {
4 int courses[7] = {1110, 1111, 2110, 2112, 2800, 3110, 3410};
5
6 printf("first element is at %p\n", &courses[0]);
7 printf("the array itself is %p\n", courses);
8
9 return 0;

10 }

41

courses and &courses[0] point to
the same address!

Presenter Notes
Presentation Notes
- &courses[0] = courses

Passing Arrays to Functions
1 int sum_n(int *vals, int count) {
2 int total = 0;
3 for (int i = 0; i < count; +[i) {
4 total += vals[i];
5 }
6 return total;
7 }
8 int main() {
9 int courses[7] = {1110, 1111, 2110, 2112, 2800, 3110, 3410};
10 int sum = sum_n(courses, 7);
11 printf("the average course is CS %d\n",
12 sum / 7);
13 return 0;
14 }

• C does not store the length of
an array!

• You must pass the length
alongside the array

42

Presenter Notes
Presentation Notes
You can pass an array to a function as a pointer-typed argument
We pass in the length of the array as well so we know when to stop iterating

Pointer Arithmetic
1 void experiment(int* courses) {
2 printf("courses = %p\n", courses);
3 printf("courses + 1 = %p\n", courses + 1);
4 }
5
6 int main() {
7 int courses[7] = {1110, 1111, 2110, 2112, 2800, 3110, 3410};

 8 experiment(courses);
 9 return 0;
10 }

43

Question:
Can we compute

addresses ourselves?

$./a.out
courses = 0x1555d56bb0
courses + 1 = 0x1555d56bb4

Presenter Notes
Presentation Notes
Copy into file and run
Adding 1 to `courses` increases its value by 4, not 1.

Pointer Arithmetic Rule
• In C, pointer arithmetic “moves” pointers by
element-sized chunks

• Element size is determined by pointer type
•courses has type int*

• Element size is 4 bytes
• Example:

• courses + n 9<<K 4 × 𝑛𝑛 : QL=K� LG� 9<<J=KK� G>�
courses

44

Dereferencing Elements of an Array

45

1 void experiment(int* courses) {
2 printf("courses[0] = %d\n", *(courses + 0));
3 printf("courses[5] = %d\n", *(courses + 5));
4 }
5
6 int main() {
7 int courses[7] = {1110, 1111, 2110, 2112, 2800, 3110, 3410};

 8 experiment(courses);
 9 return 0;
10 }

$./a.out
courses[0] = 1110
courses[5] = 3110

	Arrays & Pointers
	Administrivia
	Bit Packing
	Today’s Plan
	Arrays
	Arrays
	Demo: Arrays
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Pointers
	Simplified Computer Architecture
	A Mental Model of Memory
	A Mental Model of Memory
	A Mental Model of Memory
	Loading a Single Byte
	Loading Multiple Bytes
	Slide Number 19
	Loading Multiple Bytes
	Loading Multiple Bytes
	A Pointer is An Address
	A Pointer is An Address
	Pointer Types
	A pointer to a pointer to…
	Pointers are References
	Demo: Pointers as References
	Poll Everywhere
	Poll Everywhere
	Poll Everywhere
	Poll Everywhere
	Poll Everywhere
	Poll Everywhere
	Poll Everywhere
	Poll Everywhere
	Poll Everywhere
	Poll Everywhere
	Arrays as Pointers
	Arrays as Pointers
	Formula for address of an element at index 𝑖
	Arrays as Pointers to the First Element
	Passing Arrays to Functions
	Pointer Arithmetic
	Pointer Arithmetic Rule
	Dereferencing Elements of an Array

