
Data Types
CS 3410: Computer System Organization and Programming

1G. Guidi, A. Sampson, Z. Susag, and H. Weatherspoon]

Type Aliases
#include <stdio.h>

typedef int number;

void main() {
 number x = 3410;
 int y = x / 2;
 printf("%d %d!\n", x, y);
}

2

Presenter Notes
Presentation Notes
Don’t like the names of types in C? You can create type aliases to give them new names.

Use typedef <old type> <new type> to declare a new name. See https://www.cs.cornell.edu/courses/cs3410/2025sp/rsrc/c/decltypes.html#typedef

Structures
#include <stdio.h>

struct point {
 int x;
 int y;
}

void print_point(struct point p) {
 printf("(%d, %d)\n", p.x, p.y);
}

void main() {
 struct point location = {4, 10};

location.y = 2;
print_point(location);

}
3

Supply all the fields, in order, in
the curly braces of the initializer.

Presenter Notes
Presentation Notes
In C, you can declare structs to package up multiple values into a single, aggregate value:

Structs are a little like objects in other languages (e.g., Java), but they don’t have methods—only fields.

You use “dot syntax” to read and write the fields.

This example also shows off how to initialize a new struct, with curly brace syntax. You supply all the fields, in order, in the curly braces of the initializer.

See https://www.cs.cornell.edu/courses/cs3410/2025sp/rsrc/c/decltypes.html#struct

Short Names for Structs
#include <stdio.h>

typedef point {
 int x;
 int y;
} point_t;

void print_point(point_t p) {
 printf("(%d, %d)\n", p.x, p.y);
}

void main() {
 point_t location = {4, 10};

location.y = 2;
print_point(location);

}
4

Give struct a short name using typedef

Use <name>_t for custom type names

Presenter Notes
Presentation Notes
The type of the struct in the previous example is struct point. It’s common to give structs like these short names, for which typedef can help:

This version uses a typedef to give the struct the shorter name point_t instead of struct point. By convention, C programmers often use <something>_t for custom type names to make them stand out.

See https://www.cs.cornell.edu/courses/cs3410/2025sp/rsrc/c/decltypes.html#struct

Enumerations
#include <stdio.h>

typedef enum {
 SPRING,
 SUMMER,
 AUTUMN,
 WINTER,
} season_t;

int main() {
 season_t now = WINTER;

season_t next = SPRING;
printf("%d %d\n", now, next);

 return 0;
}

5

Useful to make code more readable to use a
name where you may have used an integer

Presenter Notes
Presentation Notes
There is another kind of “custom” data type in C, called enum. An enum is for values that can be one of a short list of options. For example, we can use it for seasons:

We’re using the same typedef trick as above to give this type the short name season_t instead of enum season.

Enums are useful to avoid situations where you would otherwise use a plain integer. They’re more readable and maintainable than trying to keep track of which number means which season in your head.

See https://www.cs.cornell.edu/courses/cs3410/2025sp/rsrc/c/decltypes.html#enum

	Data Types
	Type Aliases
	Structures
	Short Names for Structs
	Enumerations

