
Floating Point
CS 3410: Computer System Organization and Programming

1[G. Guidi, A. Sampson, Z. Susag, and H. Weatherspoon]

Goals for today
Floats: Numbers with a decimal point (rather, a “binary point”!)
• Representing fractional numbers in binary
• Fixed point
• Floating points

• Special cases
• Other floating point formats
• Guidelines

2

How to represent fractional numbers in binary?
• C has afloat type like other languages
• Floats work for numbers with a decimal point in them
• How do we represent fractional numbers with bits?
• Implications on performance and accuracy

3

Example: float.c
#include <stdio.h>

int main() {
 float n = 8.4f;
 printf("%f\n", n * 5.0f);
 return 0;
}

4

Fractional Numbers in Binary

5

Base 10

Base 2

19.6410 =19.6410 = 1∙101 + 9∙ 101 + 6∙ 10-1 + 4∙ 10-2 = 19.64

10.012 =10.012 = 1∙ 21 + 0∙ 20 + 0∙ 2-1 + 1∙ 2-2 =10.012 = 1∙ 21 + 0∙ 20 + 0∙ 2-1 + 1∙ 2-2 = 2 + ¼ = 2.25

Warning
• Fractional numbers in binary have a finite number of bits
• Thus, finite precision

• 1.0 + 2.0 != 3.0
• See https://0.30000000000000004.com/

• See notable floating point errors
• https://en.wikipedia.org/wiki/Ariane_5#Notable_launches
• https://en.wikipedia.org/wiki/Ariane_flight_V88
• https://en.wikipedia.org/wiki/Pentium_FDIV_bug

6

https://0.30000000000000004.com/
https://en.wikipedia.org/wiki/Ariane_5#Notable_launches
https://en.wikipedia.org/wiki/Ariane_flight_V88
https://en.wikipedia.org/wiki/Pentium_FDIV_bug

Example: float.c
#include <stdio.h>

int main() {
 float x = 0.00000001f;
 float y = 0.00000002f;

 printf("x = %e\n", x);
printf("y = %e\n", y);
printf("y - x = %e\n", y - x);

printf("1+x = %e\n", 1.0f + x);
printf("1+y = %e\n", 1.0f + y);
printf("(1+y) - (1+x) = %e\n", (1.0f + y) - (1.0f + x));

 return 0;
}

7

Goals for today
Floats: Numbers with a decimal point (rather, a “binary point”!)
• Representing fractional numbers in binary
• Fixed point
• Floating points

• Special cases
• Other floating point formats
• Guidelines

8

Fixed Point
• Key

• Like scientific notation, but in base 2
• E.g. 34.1010 x 10−5

• E.g. 10012 x 2-2 = 10.012 = 2.2510
• Notation: i x 2e where i is the integer and e determines where the binary point goes

• Idea
• How many bits. Call this bit count n
• Where will the binary point go? Call this position e for exponent

• e = 0 the binary point goes at the very end (so it’s just a normal integer)
• e = −1 means there is one bit after the binary point
• e = 1 means tack on one zero before the binary point

• Examples
• n = 4, e= −2, and bit pattern 1001

• 10.012 = 2.2510
• n = 4, e = -3, and bit pattern 1111

• 1111 = 1+½+ ¼ +1/8 = 1.87510
• n = 4, e = 1, and bit pattern 0101

• 010102 = 1010
9

Fixed Point
• Good and bad

• e is metadata and not part of the actual data that the computer stores
• The same bit pattern can represent many different numbers!

Depends on the exponent that the programmer has in mind
• Very fast and used a lot for machine learning (ML) and digital signal processing

(DSP)

• However, due to limitation of not being self contained, most software
used a different strategy, floating point

10

Goals for today
Floats: Numbers with a decimal point (rather, a “binary point”!)
• Representing fractional numbers in binary
• Fixed point
• Floating points

• Special cases
• Other floating point formats
• Guidelines

11

Floating Point
#include <stdio.h>

int main() {
 float n = 34.10f;
 float big = n * 123456789.0f;
 float small = n / 123456789.0f;
 printf("big = %e\nsmall = %e\n", big, small);
 return 0;
}

12

Floating Point
• Float allows the binary point to float
• Every float consists of sign, exponent, and significand (mantissa), packed together

• Where s, e, and g represent this number:
 (−1)s x 1.g x 2e−127

• A 32-bit float has
• 1-bit sign, s, which is a single bit

• 0 for positive, 1 for negative
• 8-bit exponent, e, which is an unsigned integer

• Scaling term, 2e−127, i.e. determines where the binary point goes
• −127 is a bias allowing the unsigned exponent to represent a wide range of both positive and negative

binary-point positions
• 23-bit significand (also called the mantissa), g, which is unsigned integer

• Take the bits from g and put them all after the binary point, with a 1 in the ones place
• The significand is the “main” part of the number,

so (in the normal case) it always represents a number between 1.0 and 2.0
13Check out https://float.exposed/

https://float.exposed/

Floating Point
• Example1: Convert 8.25 to float
• Step 1: Write binary representation: 1000.012
• Step 2: Normalize: 1.00001 x 23

• Step 3: Break into the three components
• s = 0
• g = .00001 = 000 0100 0000 0000 0000 0000
• e = 3 + 127 = 130
• 32-bit float: 0100 0001 0000 0100 0000 0000 0000 0000 = 0x41040000

• .
14Check out https://float.exposed/

https://float.exposed/

Floating Point
#include <stdio.h>
#include <stdint.h>
#include <string.h>

int main() {
 uint32_t bits = 0x41040000;

 // Copy the to a variable with a different type
 float val;
 memcpy(&val, &bits, sizeof(val));

 // Print the bits as a floating-point number
 printf(“%f\n", val);
 return 0;
} 15

Floating Point
#include <stdio.h>
#include <stdint.h>
#include <string.h>

int main() {
 uint32_t bits = 0x41040000;
 uint32_t mantissa = bits & 0x007fffff; // mask to isolate mantissa
 uint32_t exponent = (bits & 0x7f800000) >> 23; // bit and bit shift
 uint32_t sign = (bits & 80000000) >> 31; // mask and bit shift

 printf(“s = %b, e = %b, g = %b \n", sign, exponent, mantissa);
 return 0;
}

16

Special cases, Not a number (NaN) and Infinity
• +0.0 and -0.0, i.e. s= 0 or s=1, but you have to set both e=0 and g=0
• When e = 0, but g ≠ 0

• Denormalized number
• The rule is that denormalized numbers represent the value (−1)s x 0.g x 2−126

• The important difference is that we now use 0.g instead of 1.g
• These values are useful to eke out the last drops of precision for extremely small

numbers.

• e is all ones and g = 0 is infinity (there is a +∞ and -∞, when s=0 or s=1!)
• e is all ones and g ≠ 0 is NaN

• Dividing zero by zero is NaN, but dividing other numbers by zero is infinity!

17

Floating Point
#include <stdio.h>
#include <stdint.h>
#include <string.h>

int main() {
 printf(“%f\n", 0.0f / 0.0f); // NaN
 printf(“%f\n", 5.0f / 0.0f); // Infinity
 return 0;
}

18

Other floating point formats
• float: 32-bit, “single precision”

• 1-bit sign, 8-bit exponent, 23-bit significand
• double: 64-bit, “double precision”

• 1-bit sign
• 11-bit exponent
• 54-bit significand

• Half-precision: 16-bit, “half precision"
• 1-bit sign
• 5-bit exponent
• 10-bit significand

• bfloat, 16-bit, “brain floating point”
• Invented for machine learning (ML): Deep learning needs more range, but less precisio
• 1-bit sign
• 8-bit exponent
• 7-bit significand

19

Guidelines
• Floating-point numbers are not real numbers

• Expect to accumulate some error when using floats

• Never use floating-point numbers to represent currency
• When people say $123.45, they want that exact number of cents, not $123.40000152.
• Use an integer number of cents: i.e., a fixed-point representation with a fixed decimal point

• Be suspicious of equality, f1 == f2
• E.g. try (0.1 + 0.2) == 0.3 ?
• Consider using an “error tolerance” in comparisons, like abs(f1 - f2) < epsilon.

• Floating-point arithmetic is expensive
• It is slower and more energy than integer or fixed-point arithmetic
• The flexibility is expensive since the complexity requires more complex for the hardware
• As a result, a lot of applications such as ML convert (quantize) models to a fixed-point

representation so they can run efficientl.
20

	Floating Point
	Goals for today
	How to represent fractional numbers in binary?
	Example: float.c
	Fractional Numbers in Binary
	Warning
	Example: float.c
	Goals for today
	Fixed Point
	Fixed Point
	Goals for today
	Floating Point
	Floating Point
	Floating Point
	Floating Point
	Floating Point
	Special cases, Not a number (NaN) and Infinity
	Floating Point
	Other floating point formats
	Guidelines

