
Floating Point
CS 3410: Computer System Organization and Programming

1[G. Guidi, A. Sampson, Z. Susag, and H. Weatherspoon]

Goals for today
Floats: Numbers with a decimal point (rather, a “binary point”!)
• Representing fractional numbers in binary
• Fixed point
• Floating points

• Special cases
• Other floating point formats
• Guidelines

2

Presenter Notes
Presentation Notes
Like other languages you’ve used before, C has a float type that works for numbers with a decimal point in them.

But how does float actually work? How do we represent fractional numbers like this at the level of bits?
The answers have profound implications for the performance and accuracy of any software that does serious numerical computation.

How to represent fractional numbers in binary?
• C has afloat type like other languages
• Floats work for numbers with a decimal point in them
• How do we represent fractional numbers with bits?
• Implications on performance and accuracy

3

Presenter Notes
Presentation Notes
Like other languages you’ve used before, C has a float type that works for numbers with a decimal point in them.

But how does float actually work? How do we represent fractional numbers like this at the level of bits?
The answers have profound implications for the performance and accuracy of any software that does serious numerical computation.

Example: float.c
#include <stdio.h>

int main() {
 float n = 8.4f;
 printf("%f\n", n * 5.0f);
 return 0;
}

4

Presenter Notes
Presentation Notes
Like other languages you’ve used before, C has a float type that works for numbers with a decimal point in them.

But how does float actually work? How do we represent fractional numbers like this at the level of bits?
The answers have profound implications for the performance and accuracy of any software that does serious numerical computation.

Output: 42.000000

Fractional Numbers in Binary

5

Base 10

Base 2

19.6410 =19.6410 = 1∙101 + 9∙ 100 + 6∙ 10-1 + 4∙ 10-2 = 19.64

10.012 =10.012 = 1∙ 21 + 0∙ 20 + 0∙ 2-1 + 1∙ 2-2 =10.012 = 1∙ 21 + 0∙ 20 + 0∙ 2-1 + 1∙ 2-2 = 2 + ¼ = 2.25

Presenter Notes
Presentation Notes
Let’s return to elementary school again and think about how to read the decimal number 19.64. The digits to the right of the decimal point have place values too: those are the “tenths” and “hundredths” places. So here’s the value that decimal notation represents:

19.6410=1×101+9×100+6×10−1+4×10−2

Beyond the decimal point, the place values are negative powers of ten. We can use exactly the same strategy in binary notation, with negative powers of two. For example, let’s read the binary number 10.01:

10.012=1×21+0×20+0×2−1+1×2−2

So that’s 2+14
, or 2.25 in decimal.

The moral of this section is: binary numbers can have points too! But I suppose you call it the “binary point,” not the “decimal point.”

Warning
• Fractional numbers in binary have a finite number of bits
• Thus, finite precision

• 1.0 + 2.0 != 3.0
• See https://0.30000000000000004.com/

• See notable floating point errors
• https://en.wikipedia.org/wiki/Ariane_5#Notable_launches
• https://en.wikipedia.org/wiki/Ariane_flight_V88
• https://en.wikipedia.org/wiki/Pentium_FDIV_bug

6

https://0.30000000000000004.com/
https://en.wikipedia.org/wiki/Ariane_5#Notable_launches
https://en.wikipedia.org/wiki/Ariane_flight_V88
https://en.wikipedia.org/wiki/Pentium_FDIV_bug

Example: float.c
#include <stdio.h>

int main() {
 float x = 0.00000001f;
 float y = 0.00000002f;

 printf("x = %e\n", x);
printf("y = %e\n", y);
printf("y - x = %e\n", y - x);

printf("1+x = %e\n", 1.0f + x);
printf("1+y = %e\n", 1.0f + y);
printf("(1+y) - (1+x) = %e\n", (1.0f + y) - (1.0f + x));

 return 0;
}

7

What does y – x print?

a) 0.00000001
b) 0.00000000
c) None of the above
d) Don’t know

PollEV Question #1

Presenter Notes
Presentation Notes
What does the above program print?

x = 1.000000e-08
y = 2.000000e-08
y - x = 1.000000e-08
1+x = 1.000000e+00
1+y = 1.000000e+00
(1+y) - (1+x) = 0.000000e+00

8

Presenter Notes
Presentation Notes

Do not modify the notes in this section to avoid tampering with the Poll Everywhere activity.
More info at polleverywhere.com/support

What does y – x print?
https://www.polleverywhere.com/multiple_choice_polls/B6Sue44pF93zxLp4w88uk?display_state=instructions&activity_state=opened&state=opened&flow=Engagement&onscreen=persist

9

Presenter Notes
Presentation Notes

Do not modify the notes in this section to avoid tampering with the Poll Everywhere activity.
More info at polleverywhere.com/support

What does y – x print?
https://www.polleverywhere.com/multiple_choice_polls/B6Sue44pF93zxLp4w88uk?display_state=chart&activity_state=opened&state=opened&flow=Engagement&onscreen=persist

10

Presenter Notes
Presentation Notes

Do not modify the notes in this section to avoid tampering with the Poll Everywhere activity.
More info at polleverywhere.com/support

What does y – x print?
https://www.polleverywhere.com/multiple_choice_polls/B6Sue44pF93zxLp4w88uk?display_state=chart&activity_state=closed&state=closed&flow=Engagement&onscreen=persist

Goals for today
Floats: Numbers with a decimal point (rather, a “binary point”!)
• Representing fractional numbers in binary
• Fixed point
• Floating points

• Special cases
• Other floating point formats
• Guidelines

11

Presenter Notes
Presentation Notes
Like other languages you’ve used before, C has a float type that works for numbers with a decimal point in them.

But how does float actually work? How do we represent fractional numbers like this at the level of bits?
The answers have profound implications for the performance and accuracy of any software that does serious numerical computation.

Fixed Point
• Key

• Like scientific notation, but in base 2
• E.g. 34.1010 x 10−5

• E.g. 10012 x 2-2 = 10.012 = 2.2510
• Notation: i x 2e where i is the integer and e determines where the binary point goes

• Idea
• How many bits. Call this bit count n
• Where will the binary point go? Call this position e for exponent

• e = 0 the binary point goes at the very end (so it’s just a normal integer)
• e = −1 means there is one bit after the binary point
• e = 1 means tack on one zero before the binary point

• Examples
• n = 4, e= −2, and bit pattern 1001

• 10.012 = 2.2510
• n = 4, e = -3, and bit pattern 1111

• 1111 = 1+½+ ¼ +1/8 = 1.87510
• n = 4, e = 1, and bit pattern 0101

• 010102 = 1010
12

What is the base 10 value for
n = 5, e = −2, and bit pattern 10011

PollEV Question #2

Presenter Notes
Presentation Notes
The best and worst thing about fixed-point numbers is that the exponent e is metadata and not part of the actual data that the computer stores.
It’s in the eye of the beholder: the same bit pattern can represent many different numbers, depending on the exponent that the programmer has in mind.
That means the programmer has to be able to predict the values of e that they will need for any run of the program.

That’s a serious limitation, and it means that this strategy is not what powers the float type. On the other hand, if programs can afford the complexity to deal with this limitation, fixed-point numbers can be extremely efficient—so they’re popular in resource-constrained application domains like machine learning and digital signal processing. Most software, however, ends up using a different strategy that makes the exponent part of the data itself.

Answer: 4.75

13

Presenter Notes
Presentation Notes

Do not modify the notes in this section to avoid tampering with the Poll Everywhere activity.
More info at polleverywhere.com/support

What is the base 10 value for n = 5, e = −2, and bit pattern 10011?
https://www.polleverywhere.com/free_text_polls/LuBjT2JV8MmtKvTJCg2BV

Fixed Point
• Good and bad

• e is metadata and not part of the actual data that the computer stores
• The same bit pattern can represent many different numbers!

Depends on the exponent that the programmer has in mind
• Very fast and used a lot for machine learning (ML) and digital signal processing

(DSP)

• However, due to limitation of not being self contained, most software
used a different strategy, floating point

14

Goals for today
Floats: Numbers with a decimal point (rather, a “binary point”!)
• Representing fractional numbers in binary
• Fixed point
• Floating points

• Special cases
• Other floating point formats
• Guidelines

15

Presenter Notes
Presentation Notes
Like other languages you’ve used before, C has a float type that works for numbers with a decimal point in them.

But how does float actually work? How do we represent fractional numbers like this at the level of bits?
The answers have profound implications for the performance and accuracy of any software that does serious numerical computation.

Floating Point
#include <stdio.h>

int main() {
 float n = 34.10f;
 float big = n * 123456789.0f;
 float small = n / 123456789.0f;
 printf("big = %e\nsmall = %e\n", big, small);
 return 0;
}

16

Presenter Notes
Presentation Notes
The float type gets its name because, unlike a fixed-point representation, it lets the binary point float around. It does that by putting the point position right into the value itself. This way, every float can have a different e value, so different floats can exist on very different scales.

The %e format specifier makes printf use scientific notation, so we can see that these values have very different magnitudes.

big = 4.209876e+09
small = 2.762100e-07

Floating Point
• Float allows the binary point to float
• Every float consists of sign, exponent, and significand (mantissa), packed together

• Where s, e, and g represent this number:
 (−1)s x 1.g x 2e−127

• A 32-bit float has
• 1-bit sign, s, which is a single bit

• 0 for positive, 1 for negative
• 8-bit exponent, e, which is an unsigned integer

• Scaling term, 2e−127, i.e. determines where the binary point goes
• −127 is a bias allowing the unsigned exponent to represent a wide range of both positive and negative

binary-point positions
• 23-bit significand (also called the mantissa), g, which is unsigned integer

• Take the bits from g and put them all after the binary point, with a 1 in the ones place
• The significand is the “main” part of the number,

so (in the normal case) it always represents a number between 1.0 and 2.0
17Check out https://float.exposed/

Presenter Notes
Presentation Notes
The float type gets its name because, unlike a fixed-point representation, it lets the binary point float around. It does that by putting the point position right into the value itself. This way, every float can have a different e value, so different floats can exist on very different scales:

https://float.exposed/

Floating Point
• Example1: Convert 8.25 to float
• Step 1: Write binary representation: 1000.012
• Step 2: Normalize: 1.00001 x 23

• Step 3: Break into the three components
• s = 0
• g = .00001 = 000 0100 0000 0000 0000 0000
• e = 3 + 127 = 130
• 32-bit float: 0100 0001 0000 0100 0000 0000 0000 0000 = 0x41040000

• Example 2: Convert -5.125 to float
• Step 1: Write binary representation
• Step 2: Normalize
• Step 3: Break into the three components

• .
18Check out https://float.exposed/

What is the floating point representation
of -5.125? Give the answer in hex

PollEV Question #3

Presenter Notes
Presentation Notes
The float type gets its name because, unlike a fixed-point representation, it lets the binary point float around. It does that by putting the point position right into the value itself. This way, every float can have a different e value, so different floats can exist on very different scales:

https://float.exposed/

19

Presenter Notes
Presentation Notes

Do not modify the notes in this section to avoid tampering with the Poll Everywhere activity.
More info at polleverywhere.com/support

What is the floating point representation of -5.125? Give the answer in hex
https://www.polleverywhere.com/free_text_polls/KUnqmb52URnNj5tDHqEsp

Floating Point
• Example1: Convert 8.25 to float
• Step 1: Write binary representation: 1000.012
• Step 2: Normalize: 1.00001 x 23

• Step 3: Break into the three components
• s = 0
• g = .00001 = 000 0100 0000 0000 0000 0000
• e = 3 + 127 = 130
• 32-bit float: 0100 0001 0000 0100 0000 0000 0000 0000 = 0x41040000

• Example 2: Convert -5.125 to float
• Step 1: Write binary representation: 101.0012
• Step 2: Normalize: 1.01001 x 22

• Step 3: Break into the three components
• s = 1
• g = .01001 = 010 0100 0000 0000 0000 0000
• e = 2 + 127 = 129
• 32-bit float: 1100 0000 1010 0100 0000 0000 0000 0000 = 0xc0a40000

20Check out https://float.exposed/

What is the floating point representation
of -5.125? Give the answer in hex

PollEV Question #3

Presenter Notes
Presentation Notes
The float type gets its name because, unlike a fixed-point representation, it lets the binary point float around. It does that by putting the point position right into the value itself. This way, every float can have a different e value, so different floats can exist on very different scales:

https://float.exposed/

Floating Point
#include <stdio.h>
#include <stdint.h>
#include <string.h>

int main() {
 uint32_t bits = 0x41040000;

 // Copy the to a variable with a different type
 float val;
 memcpy(&val, &bits, sizeof(val));

 // Print the bits as a floating-point number
 printf(“%f\n", val);
 return 0;
} 21

Presenter Notes
Presentation Notes
We can use a little program that reinterprets the bits it produces to a float and prints it out:

Don’t worry about the memcpy, we will learn about it later

Floating Point
#include <stdio.h>
#include <stdint.h>
#include <string.h>

int main() {
 uint32_t bits = 0x41040000;
 uint32_t mantissa = bits & 0x007fffff; // mask to isolate mantissa
 uint32_t exponent = (bits & 0x7f800000) >> 23; // bit and bit shift
 uint32_t sign = (bits & 80000000) >> 31; // mask and bit shift

 printf(“s = %b, e = %b, g = %b \n", sign, exponent, mantissa);
 return 0;
}

22

Presenter Notes
Presentation Notes
We can use a little program that reinterprets the bits it produces to a float and prints it out:

Don’t worry about the memcpy, we will learn about it later

Special cases, Not a number (NaN) and Infinity
• +0.0 and -0.0, i.e. s= 0 or s=1, but you have to set both e=0 and g=0
• When e = 0, but g ≠ 0

• Denormalized number
• The rule is that denormalized numbers represent the value (−1)s x 0.g x 2−126

• The important difference is that we now use 0.g instead of 1.g
• These values are useful to eke out the last drops of precision for extremely small

numbers.

• e is all ones and g = 0 is infinity (there is a +∞ and -∞, when s=0 or s=1!)
• e is all ones and g ≠ 0 is NaN

• Dividing zero by zero is NaN, but dividing other numbers by zero is infinity!

23

Floating Point
#include <stdio.h>
#include <stdint.h>
#include <string.h>

int main() {
 printf(“%f\n", 0.0f / 0.0f); // NaN
 printf(“%f\n", 5.0f / 0.0f); // Infinity
 return 0;
}

24

Presenter Notes
Presentation Notes
The rules around infinity and NaN can be a little confusing. For example, dividing zero by zero is NaN, but dividing other numbers by zero is infinity.

Other floating point formats
• float: 32-bit, “single precision”

• 1-bit sign, 8-bit exponent, 23-bit significand
• double: 64-bit, “double precision”

• 1-bit sign
• 11-bit exponent
• 54-bit significand

• Half-precision: 16-bit, “half precision"
• 1-bit sign
• 5-bit exponent
• 10-bit significand

• bfloat, 16-bit, “brain floating point”
• Invented for machine learning (ML): Deep learning needs more range, but less precisio
• 1-bit sign
• 8-bit exponent
• 7-bit significand

25

Guidelines
• Floating-point numbers are not real numbers

• Expect to accumulate some error when using floats

• Never use floating-point numbers to represent currency
• When people say $123.45, they want that exact number of cents, not $123.40000152.
• Use an integer number of cents: i.e., a fixed-point representation with a fixed decimal point

• Be suspicious of equality, f1 == f2
• E.g. try (0.1 + 0.2) == 0.3 ?
• Consider using an “error tolerance” in comparisons, like abs(f1 - f2) < epsilon.

• Floating-point arithmetic is expensive
• It is slower and more energy than integer or fixed-point arithmetic
• The flexibility is expensive since the complexity requires more complex for the hardware
• As a result, a lot of applications such as ML convert (quantize) models to a fixed-point

representation so they can run efficientl.
26

	Floating Point
	Goals for today
	How to represent fractional numbers in binary?
	Example: float.c
	Fractional Numbers in Binary
	Warning
	Example: float.c
	Poll Everywhere multiple choice poll instructions screen
Activity Title: What does y – x print?
Slide 8
	Poll Everywhere multiple choice poll chart screen
Activity Title: What does y – x print?
Slide 9
	Poll Everywhere multiple choice poll chart screen
Activity Title: What does y – x print?
Slide 10
	Goals for today
	Fixed Point
	Poll Everywhere free text poll activity
Activity Title: What is the base 10 value for n = 5, e = −2, and bit pattern 10011?
Slide 13
	Fixed Point
	Goals for today
	Floating Point
	Floating Point
	Floating Point
	Poll Everywhere free text poll activity
Activity Title: What is the floating point representation of -5.125? Give the answer in hex
Slide 19
	Floating Point
	Floating Point
	Floating Point
	Special cases, Not a number (NaN) and Infinity
	Floating Point
	Other floating point formats
	Guidelines

