Numbers & Arithmetic

CS 3410: Computer System Organization and Programming

[K. Bala, A. Bracy, E. Sirer, Z. Susag, and H. Weatherspoon]

Roadmap

- Lecture #1
- Number representations
- Lecture #2 (today!)
- Addition
- Negative numbers, two's complement
- Addition (two's compliment)
- Overflow

Binary Addition

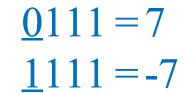
Addition works the same for all bases

- Add the digits in each position
- Propagate the carry

Binary addition is pretty easy

- Combine two bits at a time
- Along with a carry

Carry-in 111 Carry-out 001110 + 011100 101010



1st **Try**: Sign/Magnitude Representation

First Attempt:Sign/Magnitude Representation

- 1 bit for sign (0=positive, 1=negative)
- N-1 bits for magnitude Problem?
- 2 zero's: +0 different than -0 0000 = +01000 = -0
- Complicated circuits
- -2 + 1 =??? [Prelim 1, FA19]

IBM 7090, 1959: "a second-generation transistorized version of the earlier IBM 709 vacuum tube mainframe computers"

Final Try: Two's Complement Representation

Positive numbers are represented as usual

• 0 = 0000, 1 = 0001, 3 = 0011, 7 = 0111

Leading 1's for negative numbers

To negate any number:

- complement *all* the bits (i.e. flip all the bits)
- then add 1
- -1: $1 \Rightarrow 0001 \Rightarrow 1110 \Rightarrow 1111$
- -3: $3 \Rightarrow 0011 \Rightarrow 1100 \Rightarrow 1101$
- -8: $8 \Rightarrow 1000 \Rightarrow 0111 \Rightarrow 1000$
- -0: $0 \Rightarrow 0000 \Rightarrow 1111 \Rightarrow 0000$ (this is good, -0=+0)

Two's Complement

Non-negatives unchanged:	flip	Negatives then add 1
• $+0 = 0000$	$\overline{0} = 11111$	-0 = 0000
	$\bar{1} = 1110$	-1=1111
• $+1 = 0001$ • $+2 = 0010$ How do +3 = 0011 express	you $\bar{2} = 1101$	-2 = 1110
• $+3 = 0011$ express	$\overline{3} = 1100$	-3 = 1101
magni		-4 = 1100
15 - 0101	5 = 1010	-5 = 1011
• $+5 = 0101$ • $+6 = 0110$ negative	$\overline{6} = 1001$	-6=1010
• $+7 = 01111$	$\overline{7} = 1000$	-7 = 1001
• $+8 = 1000$	$\overline{8} = 0111$	-8 = 1000

Cornell Bowers CIS Computer Science (8 no longer expressible in 4 bits when moving to signed)

Two's Complement vs. Unsigned

Another way to	-1 =	1111	=15	-8+0+2+1
look at it:	-2 =	1110	=14	
the MSB is a	-3 =	1101	=13	
negative column	-4 =	1100	=12	
(here -8)	-5 =	1011	=11	
$\begin{array}{c} 4 \text{ bit} \\ \text{Two's} \\ \text{Complement} \\ -8 \dots 7 \end{array}$		$ \begin{array}{c} 1010 \\ 1001 \\ 1000 \\ 0111 \\ 0100 \\ 0101 \\ 0010 \\ 0001 \\ 0000 \\ \end{array} $	=10 =9 =8 =7 =6 =5 =4 =3 =2 =1 =0	4 bit Unsigned Binary 0 15

PollEV Question #1:

What is the value (expressed in decimal) of the 2s complement number 11010

- A 26
- B. 6
- C. -6
- D. -10
- E. -26

Two's Complement Facts

Signed two's complement

- Negative numbers have leading 1's
- zero is unique: +0 = -0
- wraps from largest positive to largest negative

Nbits can be used to represent

- unsigned: range $0...2^{N-1}$
 - eg: 8 bits $\Rightarrow 0...255$
- signed (two's complement): $-(2^{N-1})...(2^{N-1} 1)$
- E.g.: 8 bits \Rightarrow (1000 0000) ... (0111 1111) • -128 ... 127

Computer Science

PollEV Question #2:

Suppose I want to express the 2s complement number 1010 in 5 bits instead of 4 bits. What number should I use?

- A 01010
- B. 11010
- C. 10101
- D. 10100
- E. Sorry, it is not possible.

Sign Extension & Truncation

Extendingto larger size

- 11111 = -1
- 111111111=-1
- 0111 = 7
- 0000 0111 = 7
- Truncate to smaller size
 - 0000 1111 = 15
 - BUT, 0000 1111 = 1111 = -1

Two's Complement Addition

•	1 1 • 4 • 1	т 41 °		-1 =	<mark>1</mark> 111
Addition as usual. Ignore the sign.				-2=	<mark>1</mark> 110
It	just works!	Examples		-3 =	<mark>1</mark> 101
	1+-1=			-4 =	1 100
	-3 + -1 =			-5 =	1 011
	-7 + 3 =			-6=	<mark>1</mark> 010
	7 + (-3) =			-7 =	1 001
				-8 =	1000
				+7 =	0111
				+6 =	0110
				+5 =	0101
				+4 =	0100
				+3 =	0011
				+2 =	0010
	Cornell Bowers C·IS			+1 =	0001
	Computer Science			0 =	0000

12

=15

=14

=13

= 12

=11

=10

=9

=8

=7

=6

=5

=4

=3

=2

=1

=0

Overflow

When caroverflow occur?

• adding a negative and a positive?

• adding two positives?

• adding two negatives?

1110 -2 == 14-3 =1101 =13=12-4 =1100 -5 =1011 =11-6= 1010 =10-7 =1001 =9 -8 =1000 = 8+7 =0111 =7 +6 =0110 =6+5 =0101 =5 +4 =0100 =4+3 =0011 =3+2 =0010 =20001 +1 ==1 $\mathbf{0} =$ 0000 =()

1111

-1 =

=15

13

Takeaways

- Digital computers are implemented via logic circuits and thus represent *all* numbers in binary (base 2).
- We use decimal or hex for convenience and need to be able to convert to binary and back.
- Adding two 1-bit numbers generalizes to adding two numbers of any size since 1-bit full adders can be cascaded.
- Using Two's complement number representation simplifies adder Logic circuit design (0 is unique, easy to negate).
- Subtraction is adding, where one operand is negated (to negate in two's complement: flip the bits and add 1).
- Overflow not enough bits for the result; i.e. if sign of input operands A and B are the same, but different than the of the result S.

