
Numbers & Arithmetic
CS 3410: Computer System Organization and Programming

[K. Bala, A. Bracy, E. Sirer, Z. Susag, and H. Weatherspoon]

Presenter Notes
Presentation Notes
Play

Roadmap
Lecture #1
• Number representations

Lecture #2 (today!)
• Addition
• Negative numbers, two's complement
• Addition (two’s compliment)
• Overflow

2

Binary Addition
Addition works the same for all bases

• Add the digits in each position
• Propagate the carry

Binary addition is pretty easy
• Combine two bits at a time
• Along with a carry

3

183
+ 254

001110
+ 011100

1

437

111 000

111 Carry-out
Carry-in

Presenter Notes
Presentation Notes
Talk about Cin (carry in) and Cout (carry out)
Animate this better
Add another slide
So we need two numbers, the sum, carry in, and carry out

1st Try: Sign/Magnitude Representation
First Attempt: Sign/Magnitude Representation
• 1 bit for sign (0=positive, 1=negative)
• N-1 bits for magnitude
Problem?
• 2 zero’s: +0 different than -0

• Complicated circuits
• -2 + 1 = ???

[Prelim 1, FA19]

4
IBM 7090, 1959: “a second-generation transistorized version of the earlier IBM
709 vacuum tube mainframe computers”

0111 =
1111 =
0111 = 7
1111 = -7

0000 = +0
1000 = -0

Presenter Notes
Presentation Notes
problems? two zeros, circuit still complicated
e.g. the existence of two forms of the same value (-0 and +0) necessitates two rather than a single comparison when checking for equality with zero.

The IBM 7090 was based in sign-magnitude representation.

The CDC 6000 series and UNIVAC 1100 series computers were based on ones' complement.

Also, in one’s complement, in addition to two zero’s, there is a crazy phenomenon called "end-around carry“: If the carry extends past the end of the word it is said to have "wrapped" around, a condition called an "end-around carry". When this occurs, the bit must be added back in at the right-most bit. This phenomenon does not occur in two's complement arithmetic.
Subtraction is similar, except that borrows are propagated to the left instead of carries. If the borrow extends past the end of the word it is said to have "wrapped" around, a condition called an "end-around borrow". When this occurs, the bit must be subtracted back in at the right-most bit. This phenomenon does not occur in two's complement arithmetic.

The CDC 6000 series and UNIVAC 1100 series computers were based on ones' complement.

Final Try: Two’s Complement Representation

Positive numbers are represented as usual
• 0 = 0000, 1 = 0001, 3 = 0011, 7 = 0111

Leading 1’s for negative numbers
To negate any number:

• complement all the bits (i.e. flip all the bits)
• then add 1
• -1: 1 ⇒ 0001 ⇒ 1110 ⇒ 1111
• -3: 3 ⇒ 0011 ⇒ 1100 ⇒ 1101
• -8: 8 ⇒ 1000 ⇒ 0111 ⇒ 1000
• -0: 0 ⇒ 0000 ⇒ 1111 ⇒ 0000 (this is good, -0 = +0)

5

Presenter Notes
Presentation Notes
add 1 and *discard carry*
Add a “Did you know box”
The two's complement of an N-bit number is defined as the *complement* with respect to 2^N, in other words the result of subtracting the number from 2^N. This is also equivalent to taking the *ones' complement* and then adding one, since the sum of a number and its ones' complement is all 1 bits. The two's complement of a number behaves like the negative of the original number in most arithmetic, and positive and negative numbers can coexist in a natural way.

Two's complement is the easiest to implement in hardware, which may be the ultimate reason for its widespread popularity[citation needed]. Remember that processors on the early mainframes often consisted of thousands of transistors – eliminating a significant number of transistors was a significant cost savings. The architects of the early integrated circuit based CPUs (Intel 8080, etc.) chose to use two's complement math. As IC technology advanced, virtually all adopted two's complement technology. Intel, AMD, and IBM POWER chips are all two's complement.[

Non-negatives
unchanged:
• +0 = 0000
• +1 = 0001
• +2 = 0010
• +3 = 0011
• +4 = 0100
• +5 = 0101
• +6 = 0110
• +7 = 0111
• +8 = 1000

Two’s Complement

6

Negatives
 flip then add 1
 �0 = 1111 -0 = 0000
 �1 = 1110 -1 = 1111
 �2 = 1101 -2 = 1110
 �3 = 1100 -3 = 1101
 �4 = 1011 -4 = 1100
 �5 = 1010 -5 = 1011
 �6 = 1001 -6 = 1010
 �7 = 1000 -7 = 1001
 �8 = 0111 -8 = 1000

(8 no longer expressible in 4 bits when moving to signed)

Presenter Notes
Presentation Notes
choose -8 so we have a sign bit
+0 = -0
wraps from +7 to -8
asymmetric: no +8

-1 = 1111 = 15
-2 = 1110 = 14
-3 = 1101 = 13
-4 = 1100 = 12
-5 = 1011 = 11
-6 = 1010 = 10
-7 = 1001 = 9
-8 = 1000 = 8
+7 = 0111 = 7
+6 = 0110 = 6
+5 = 0101 = 5
+4 = 0100 = 4
+3 = 0011 = 3
+2 = 0010 = 2
+1 = 0001 = 1
 0 = 0000 = 0

Two’s Complement vs. Unsigned

7

4 bit
Two’s

Complement
-8 … 7

4 bit
Unsigned

Binary
0 … 15

Another way to
look at it:

the MSB is a
negative column

(here -8) -8 + 0 + 2 + 1

Presenter Notes
Presentation Notes
choose -8 so we have a sign bit
+0 = -0
wraps from +7 to -8
asymmetric: no +8

https://xkcd.com/571/

8

PollEV Question #1:
What is the value (expressed in decimal) of the 2s
complement number
11010

A. 26
B. 6
C. -6
D. -10
E. -26

Presenter Notes
Presentation Notes
11010
00101 (flip)
00110
C: -6

PollEV Question #1:
What is the value (expressed in decimal) of the 2s
complement number
11010

A. 26
B. 6
C. -6
D. -10
E. -26

9

11010
00101

______+1
-6 = 00110

or
-6 = -16 + 8 + 2

Presenter Notes
Presentation Notes
11010
00101 (flip)
00110
C: -6

Two’s Complement Facts
Signed two’s complement

• Negative numbers have leading 1’s
• zero is unique: +0 = - 0
• wraps from largest positive to largest negative

N bits can be used to represent
• unsigned: range 0…2N-1

• eg: 8 bits ⇒ 0…255
• signed (two’s complement): -(2N-1)…(2N-1 - 1)

• E.g.: 8 bits ⇒ (1000 0000) … (0111 1111)
• -128 … 127

10

Presenter Notes
Presentation Notes
Why two’s complement works:
Given a set of all possible N-bit values, we can assign the lower (by binary value) half to be the integers from 0 to (2^[N−1]−1) inclusive and the upper half to be −2^[N−1] to −1 inclusive. The upper half can be used to represent negative integers from −2^[N−1] to −1 because, under addition modulo 2^N they behave the same way as those negative integers. That is to say that because i + j mod 2^N = i + (j + 2^N) mod 2^N any value in the set { j + k2^N | k is an integer }  can be used in place of j.

For example, with eight bits, the unsigned bytes are 0 to 255. Subtracting 256 from the top half (128 to 255) yields the signed bytes −128 to −1.

The relationship to two's complement is realised by noting that 256 = 255 + 1, and (255 − x) is the ones' complement of x.

http://en.wikipedia.org/wiki/Two%27s_complement

PollEV Question #2:
Suppose I want to express the 2s complement
number 1010 in 5 bits instead of 4 bits. What number
should I use?

A. 01010
B. 11010
C. 10101
D. 10100
E. Sorry, it is not possible.

11

Presenter Notes
Presentation Notes
B, Sign Extend it!

12

PollEV Question #2:
Suppose I want to express the 2s complement
number 1010 in 5 bits instead of 4 bits. What number
should I use?

A. 01010
B. 11010
C. 10101
D. 10100
E. Sorry, it is not possible.

Presenter Notes
Presentation Notes
B, Sign Extend it!

Sign Extension & Truncation
Extending to larger size

• 1111 = -1
• 1111 1111 = -1
• 0111 = 7
• 0000 0111 = 7

Truncate to smaller size
• 0000 1111 = 15
• BUT, 0000 1111 = 1111 = -1

13

14

-1 = 1111 = 15
-2 = 1110 = 14
-3 = 1101 = 13
-4 = 1100 = 12
-5 = 1011 = 11
-6 = 1010 = 10
-7 = 1001 = 9
-8 = 1000 = 8
+7 = 0111 = 7
+6 = 0110 = 6
+5 = 0101 = 5
+4 = 0100 = 4
+3 = 0011 = 3
+2 = 0010 = 2
+1 = 0001 = 1
 0 = 0000 = 0

Two’s Complement Addition
Addition as usual. Ignore the sign.
It just works! Examples

 1 + -1 =
-3 + -1 =
-7 + 3 =
 7 + (-3) =

Presenter Notes
Presentation Notes
1 + (-1)
(-3) + (-1)
(-7) + 3
7 + (-3)
7 + 1 : overflow
(-7) + (-3) : overflow
(-7) + (-1)

7 + 1 = 0111+0001 = 1000 = -8 (OVERFLOW)! (Had a carry in to the MSB!) Sign of out != sign of in
7 + (-3) 0111+ 1101 = 1100 = -4
-7+-3 = 1001 + 1101 = 0110 (cout = 1) (Did not have a carry in to the MSB)
-7+-1 = 1001 + 1111 = 1000 (cout = 1)

15

-1 = 1111 = 15
-2 = 1110 = 14
-3 = 1101 = 13
-4 = 1100 = 12
-5 = 1011 = 11
-6 = 1010 = 10
-7 = 1001 = 9
-8 = 1000 = 8
+7 = 0111 = 7
+6 = 0110 = 6
+5 = 0101 = 5
+4 = 0100 = 4
+3 = 0011 = 3
+2 = 0010 = 2
+1 = 0001 = 1
 0 = 0000 = 0

Two’s Complement Addition
Addition as usual. Ignore the sign.
It just works! Examples

 1 + -1 = 0001 + 1111 =
-3 + -1 = 1101 + 1111 =
-7 + 3 = 1001 + 0011 =
 7 + (-3) = 0111 + 1101 =

Presenter Notes
Presentation Notes
1 + (-1)
(-3) + (-1)
(-7) + 3
7 + (-3)
7 + 1 : overflow
(-7) + (-3) : overflow
(-7) + (-1)

7 + 1 = 0111+0001 = 1000 = -8 (OVERFLOW)! (Had a carry in to the MSB!) Sign of out != sign of in
7 + (-3) 0111+ 1101 = 1100 = -4
-7+-3 = 1001 + 1101 = 0110 (cout = 1) (Did not have a carry in to the MSB)
-7+-1 = 1001 + 1111 = 1000 (cout = 1)

Two’s Complement Addition
Addition as usual. Ignore the sign.
It just works! Examples

 1 + -1 = 0001 + 1111 = 0000 (0)
-3 + -1 = 1101 + 1111 = 1100 (-4)
-7 + 3 = 1001 + 0011 = 1100 (-4)
 7 + (-3) = 0111 + 1101 = 0100 (4)

16

-1 = 1111 = 15
-2 = 1110 = 14
-3 = 1101 = 13
-4 = 1100 = 12
-5 = 1011 = 11
-6 = 1010 = 10
-7 = 1001 = 9
-8 = 1000 = 8
+7 = 0111 = 7
+6 = 0110 = 6
+5 = 0101 = 5
+4 = 0100 = 4
+3 = 0011 = 3
+2 = 0010 = 2
+1 = 0001 = 1
 0 = 0000 = 0

Which of the following has problems
(assuming a four-bit number)?

a) 7 + 1
b) -7 + -3
c) -7 + -1
d) Only A & B have problems
e) They all have problems.

PollEV Question #3

Presenter Notes
Presentation Notes
1 + (-1)
(-3) + (-1)
(-7) + 3
7 + (-3)
7 + 1 : overflow
(-7) + (-3) : overflow
(-7) + (-1)

7 + 1 = 0111+0001 = 1000 = -8 (OVERFLOW)! (Had a carry in to the MSB!) Sign of out != sign of in
7 + (-3) 0111+ 1101 = 1100 = -4
-7+-3 = 1001 + 1101 = 0110 (cout = 1) (Did not have a carry in to the MSB)
-7+-1 = 1001 + 1111 = 1000 (cout = 1)

17

-1 = 1111 = 15
-2 = 1110 = 14
-3 = 1101 = 13
-4 = 1100 = 12
-5 = 1011 = 11
-6 = 1010 = 10
-7 = 1001 = 9
-8 = 1000 = 8
+7 = 0111 = 7
+6 = 0110 = 6
+5 = 0101 = 5
+4 = 0100 = 4
+3 = 0011 = 3
+2 = 0010 = 2
+1 = 0001 = 1
 0 = 0000 = 0

Which of the following has problems
(assuming a four-bit number)?

a) 7 + 1 = 1000
b) -7 + -3 = 1 0110
c) -7 + -1 = 1000
d) Only A & B have problems
e) They all have problems.

PollEV Question #3

Two’s Complement Addition
Addition as usual. Ignore the sign.
It just works! Examples

 1 + -1 = 0001 + 1111 = 0000 (0)
-3 + -1 = 1101 + 1111 = 1100 (-4)
-7 + 3 = 1001 + 0011 = 1100 (-4)
 7 + (-3) = 0111 + 1101 = 0100 (4)

Presenter Notes
Presentation Notes
1 + (-1)
(-3) + (-1)
(-7) + 3
7 + (-3)
7 + 1 : overflow
(-7) + (-3) : overflow
(-7) + (-1)

7 + 1 = 0111+0001 = 1000 = -8 (OVERFLOW)! (Had a carry in to the MSB!) Sign of out != sign of in
7 + (-3) 0111+ 1101 = 1100 = -4
-7+-3 = 1001 + 1101 = 0110 (cout = 1) (Did not have a carry in to the MSB)
-7+-1 = 1001 + 1111 = 1000 (cout = 1)

18

-1 = 1111 = 15
-2 = 1110 = 14
-3 = 1101 = 13
-4 = 1100 = 12
-5 = 1011 = 11
-6 = 1010 = 10
-7 = 1001 = 9
-8 = 1000 = 8
+7 = 0111 = 7
+6 = 0110 = 6
+5 = 0101 = 5
+4 = 0100 = 4
+3 = 0011 = 3
+2 = 0010 = 2
+1 = 0001 = 1
 0 = 0000 = 0

Which of the following has problems
(assuming a four-bit number)?

a) 7 + 1 = 1000 overflow
b) -7 + -3 = 1 0110 overflow
c) -7 + -1 = 1000 fine
d) Only A & B have problems
e) They all have problems.

PollEV Question #3

Two’s Complement Addition
Addition as usual. Ignore the sign.
It just works! Examples

 1 + -1 = 0001 + 1111 = 0000 (0)
-3 + -1 = 1101 + 1111 = 1100 (-4)
-7 + 3 = 1001 + 0011 = 1100 (-4)
 7 + (-3) = 0111 + 1101 = 0100 (4)

Presenter Notes
Presentation Notes
1 + (-1)
(-3) + (-1)
(-7) + 3
7 + (-3)
7 + 1 : overflow
(-7) + (-3) : overflow
(-7) + (-1)

7 + 1 = 0111+0001 = 1000 = -8 (OVERFLOW)! (Had a carry in to the MSB!) Sign of out != sign of in
7 + (-3) 0111+ 1101 = 1100 = -4
-7+-3 = 1001 + 1101 = 0110 (cout = 1) (Did not have a carry in to the MSB)
-7+-1 = 1001 + 1111 = 1000 (cout = 1)

Overflow
When can overflow occur?

• adding a negative and a positive?
• Overflow cannot occur (Why?)

• adding two positives?
• Overflow can occur (Why?)

• adding two negatives?
• Overflow can occur (Why?)

19

-1 = 1111 = 15
-2 = 1110 = 14
-3 = 1101 = 13
-4 = 1100 = 12
-5 = 1011 = 11
-6 = 1010 = 10
-7 = 1001 = 9
-8 = 1000 = 8
+7 = 0111 = 7
+6 = 0110 = 6
+5 = 0101 = 5
+4 = 0100 = 4
+3 = 0011 = 3
+2 = 0010 = 2
+1 = 0001 = 1
 0 = 0000 = 0

Presenter Notes
Presentation Notes
Overflow occurs because there are not enough bits to represent the precision/magnitude of the result of the add
 MSB

 0
Cout = 0 0 Cin = 0
 0

 a = 0
Cout = 0 b = 0 Cin = 1 (Overflow!)
 s = 1

 a = 1
Cout = 1 b = 1 Cin = 0 (Overflow!)
 s = 0

 a = 1
Cout = 1 b = 1 Cin = 1
 s = 1

Overflow
When can overflow occur?

• adding a negative and a positive?
• Overflow cannot occur (Why?)
• Always subtract larger magnitude from smaller

• adding two positives?
• Overflow can occur (Why?)
• Precision: Add two positives, and get a negative number!

• adding two negatives?
• Overflow can occur (Why?)
• Precision: add two negatives, get a positive number!

20

Presenter Notes
Presentation Notes
Overflow occurs because there are not enough bits to represent the precision/magnitude of the result of the add
 MSB

 0
Cout = 0 0 Cin = 0
 0

 a = 0
Cout = 0 b = 0 Cin = 1 (Overflow!)
 s = 1

 a = 1
Cout = 1 b = 1 Cin = 0 (Overflow!)
 s = 0

 a = 1
Cout = 1 b = 1 Cin = 1
 s = 1

21

Presenter Notes
Presentation Notes
This behavior is called integer overflow (https://en.wikipedia.org/wiki/Integer_overflow) and it is the source of many fun bugs in all kinds of software. Memorably, YouTube originally used a signed 32-bit number (i.e., an int) to represent the number of views for a video. That meant that the largest number of views that any video could have was 232−1−1, or 2,147,483,647 views. The first video to exceed this number of views was PSY’s “Gangnam Style.” (https://www.youtube.com/watch?v=cGc_NfiTxng) YouTube made a cute announcement when they had to change that value to a 64-bit integer. That should be plenty of views for a long time (more than 9 quintillion views): https://www.theatlantic.com/technology/archive/2014/12/how-gangnam-style-broke-youtube/383389/

Takeaways
• Digital computers are implemented via logic circuits and thus represent

all numbers in binary (base 2).
• We use decimal or hex for convenience and need to be able to convert to

binary and back.
• Adding two 1-bit numbers generalizes to adding two numbers of any size

since 1-bit full adders can be cascaded.
• Using Two’s complement number representation simplifies adder Logic

circuit design (0 is unique, easy to negate).
• Subtraction is adding, where one operand is negated (to negate in two's

complement: flip the bits and add 1).
• Overflow not enough bits for the result; i.e. if sign of input operands A

and B are the same, but different than the of the result S.

22

	Numbers & Arithmetic
	Roadmap
	Binary Addition
	1st Try: Sign/Magnitude Representation
	Final Try: Two’s Complement Representation
	Two’s Complement
	Two’s Complement vs. Unsigned
	PollEV Question #1:
	PollEV Question #1:
	Two’s Complement Facts
	PollEV Question #2:
	PollEV Question #2:
	Sign Extension & Truncation
	Two’s Complement Addition
	Two’s Complement Addition
	Two’s Complement Addition
	Two’s Complement Addition
	Two’s Complement Addition
	Overflow
	Overflow
	Slide Number 21
	Takeaways

