
Programming in C
CS 3410: Computer System Organization and Programming

[K. Bala, A. Bracy, E. Sirer, Z. Susag, and H. Weatherspoon]

Presenter Notes
Presentation Notes
Lecture does not need a white board.

What's your background in C?
A. Never learned C until CS 3410

B. Learned C in another class at Cornell

C. Learned C in a non-university setting

D. Know some C++

E. Know a lot of C++

2

Presenter Notes
Presentation Notes
"Languages are tools. C is a dangerous tool. Try not to hurt yourself or others." – not

Why C?
"C is a horrible, horrible programming language."
 – David Gries (Cornell)
<expletives deleted> - Michael Clarkson (Cornell)
"C had a good run." – Andrew Myers (Cornell)

"C is for people who don't like to wear seatbelts.“
 -my 1st CS professor

"C is quirky, flawed, and an enormous success."
 - Dennis Ritchie (creator of C)

"A C program is like a fast dance on a newly waxed dance floor by people carrying razors.“
 - Waldi Ravens (who is this?)

3

Presenter Notes
Presentation Notes
"Languages are tools. C is a powerful tool, but C is also a dangerous tool. Try not to hurt yourself or others." – not

After All These Years, the World is Still
Powered by C Programming
History:
• UNIX started in 1969; C was created for UNIX and UNIX was rewritten in C in 1972

What is written in C?
• Operating Systems: Windows, Linux, Mac OS X kernel
• Mobile OSes: iOS, Android and Windows Phone kernels
• Databases: Oracle Database, MySQL, MS SQL Server, and PostgreSQL)
• Embedded Systems: alarm clocks, microwaves, coffee maker, every sensor and control

device in your car

4

https://www.toptal.com/c/after-all-these-years-the-world-is-still-powered-by-c-programming
https://www.toptal.com/c/after-all-these-years-the-world-is-still-powered-by-c-programming

Why is C Still Used?
• Portability and Efficiency
• Memory manipulation
• Deterministic Usage of Resources
• Code Size

Reasons to Learn C
• Understand the Machine (Think in C)
• Work on Many Interesting C Projects
• Cornell: 3410, 4410, 4411, 4414, and more

5

Why is C Still Used?

6

Energy Efficiency across Programming Language
R Pereira, M Couto, F Ribeiro, R Rua, J Cunha, JP Fernandes, J
Saraiva. ACM SIGPLAN International Conference on Software
Language Engineering (SLA). Pages 256–267. October 2017.
https://doi.org/10.1145/3136014.3136031

C is 100% WYSIWYG*
• There is no magic.
• Nothing is hidden.
• Nothing is protected.

No constructors, no classes, no "new", no inheritance, no base
objects.
There are some libraries.

*What You See Is What You Get

7

Goals for today
• Minimal C basics

• Minimal C program highlighting C basics
• How to print!

• Print numbers
• Print negative numbers
• Overflow

• More C basics
• Prototypes, Headers, Libraries
• Compiling and Linking

8

Getting started: minimal.c
int main() {
 return 0;
}

9

Presenter Notes
Presentation Notes
In basic ways, the syntax looks a little like Java. There are curly braces and semicolons. There is even a type called int. (This is because the designers of Java based its syntax on C.)
Unlike Java, however, there is no class definition here. You just write a main function at the top level; it’s not a method on some class. In fact, C doesn’t have classes or objects at all.
C is a statically typed language (like Java but not like Python). This means that C makes you declare the types of everything you write down. This example shows one type: the return type of the main function is int.
That return 0 for main determines the exit status for your program.

Getting started: minimal.c
int main() {
 return 0;
}

Compile
 $ gcc minimal.c –o minimal

Execute
 $ minimal

10

Presenter Notes
Presentation Notes
 GCC (https://gcc.gnu.org/) is the name of the compiler we’ll be using in this course.
 -o minimal to tell GCC where to put the output file (if you don’t, GCC picks the name a.out)

Getting started: minimal.c
int main() {
 return 0;
}

Compile [on 3410 infrastructure]
 $ rv gcc -Wall -Wextra -Wpedantic -Wshadow -Wformat=2 -std=c17 -o minimal minimal.c

Execute [on 3410 infrastructure]
 $ rv qemu minimal

11

Presenter Notes
Presentation Notes
 GCC (https://gcc.gnu.org/) is the name of the compiler we’ll be using in this course.
 -o minimal to tell GCC where to put the output file (if you don’t, GCC picks the name a.out)

compile
$ rv gcc -Wall -Wextra -Wpedantic -Wshadow -Wformat=2 -std=c17 -o minimal minimal.c
execute
$ rv qemu minimal That runs the QEMU emulator to execute the compiled minimal program. It won’t print anything at all!

Printing: hello.c
#include <stdio.h>

int main() {

 printf("Hello, 3410!\n");

 return 0;
}

12

Presenter Notes
Presentation Notes
The #include is how you import libraries in C.
The stdio.h file is part of the C standard library, which means it comes with every C compiler.
The stdio.h file defines the printf function, which is how you print things in C.
printf is more powerful than what we’re seeing here; we’ll see more of its power later.
The \n in the string is an escape sequence that means a newline character. That’s the same as in Java.

Printing: hello.c
#include <stdio.h>

int main() {
 int n = 3410;
 printf("Hello, %d!\n", n);

 return 0;
}

13

Presenter Notes
Presentation Notes
We added a variable declaration of n, with type int.
Read more about the basic types in C: https://www.cs.cornell.edu/courses/cs3410/2025sp/rsrc/c/types.html

To print out the number, printf exploits format specifiers in the string that you pass to it.
Format specifiers look like %d: they always start with %, followed by a few characters that tell printf how to format stuff.
The d in this one stands for decimal, because that’s the base it uses.

If you have n format specifiers in your printf string, you should pass n extra arguments after the string to printf. It will print each extra argument using each specified format, in order.

Printing: hello.c
#include <stdio.h>

int main() {
 int n = 3410;
 printf("Decimal: %d\n", n);
 printf("Binary: %b\n", n);
 printf("Hexadecimal: %x\n", n);

 return 0;
}

14

Presenter Notes
Presentation Notes
We added a variable declaration of n, with type int.
Read more about the basic types in C: https://www.cs.cornell.edu/courses/cs3410/2025sp/rsrc/c/types.html

To print out the number, printf exploits format specifiers in the string that you pass to it.
Format specifiers look like %d: they always start with %, followed by a few characters that tell printf how to format stuff.
The d in this one stands for decimal, because that’s the base it uses.

If you have n format specifiers in your printf string, you should pass n extra arguments after the string to printf. It will print each extra argument using each specified format, in order.

Printing: print_int.c
#include <stdio.h>
#include <stdint.h>

int main() {
 int8_t n = 7;
 printf("n = %hhd\n", n);

 return 0;
}

15

Presenter Notes
Presentation Notes
C makes it easy to put our new knowledge about binary numbers and two’s complement into practice. We’ll use the int8_t type, which is an integer with exactly 8 bits. (In lots of “normal” code, you can just use int to get a default-sized integer—but for these examples, we really want to use just 8 bits.)

The %hhd format specifier is for printing the int8_t type in decimal.
 . hh specifies that the argument is a 8 bits (also known as a signed char)
We also need to #include the stdint.h library to get the int8_t type: https://en.cppreference.com/w/c/types/integer

Printing: print_int.c
#include <stdio.h>
#include <stdint.h>

int main() {
 int8_t n = 0b00000111;
 printf("n = %hhd\n", n);

 return 0;
}

16

Presenter Notes
Presentation Notes
This should also print 7.

An important thing to reassure yourself is that, in the two programs in this and the previous slide, the variable n contains exactly the same value. There is no difference between the same number specified in decimal notation and binary notation; the choice is just a convenience for the programmer, and the compiler will translate either one into exactly the same value for the computer. (And that value will be in binary because, of course, everything is bits.)

Printing: print_int_neg.c
#include <stdio.h>
#include <stdint.h>

int main() {
 int8_t n = 0b10000111;
 printf("n = %hhd\n", n);

 return 0;
}

17

What is the value of n if we
flip the most significant bit
from 0 to 1?

PollEV Question #2

Presenter Notes
Presentation Notes
We can also use the sign bit. What’s this value if we flip the top bit of 7 from 0 to 1?

Answer: -121

18

Presenter Notes
Presentation Notes

Do not modify the notes in this section to avoid tampering with the Poll Everywhere activity.
More info at polleverywhere.com/support

What is the value of n if we flip the most significant bit from 0 to 1?
https://www.polleverywhere.com/free_text_polls/nsRIEGta25ikO9iMKVGPn

Printing: print_int_neg.c
#include <stdio.h>
#include <stdint.h>

int main() {
 int8_t n = 0b10000111;
 printf("n = %hhd\n", n);

 return 0;
}

19

What is the value of n if we
flip the most significant bit
from 0 to 1? Answer: -121

PollEV Question #2

Presenter Notes
Presentation Notes
We can also use the sign bit. What’s this value if we flip the top bit of 7 from 0 to 1?

Answer: -121

Printing: print_int_neg.c
#include <stdio.h>
#include <stdint.h>

int main() {
 int8_t n = 7;
 printf("n (decimal) = %hhd\n", n);
 printf("n (binary) = %hhd\n", n);

 int8_t flipped = ~n + 1;
 printf("n (decimal) = %hhd\n", flipped);
 printf("n (binary) = %hhd\n", flipped);

 return 0;
}

20

Presenter Notes
Presentation Notes
Let’s try the inversion trick from last time: the identity that, in two’s complement, ~x + 1 is equal to -x.

Printing: print_int_neg.c
#include <stdio.h>
#include <stdint.h>

int8_t flip(int8_t num) {
 return ~num + 1;
}

int main() {
 for (int8_t i = -128; i <= 127; ++i) {
 printf("i = %hhd\n", i);

 int8_t negated = -i;
 int8_t flipped = flip(i);
 if(negated != flipped) {
 printf("mismatch\n")}
 }
 }
 return 0;
} 21

Which numbers do not match; i.e.
negated != flipped?

a) -128
b) 127
c) All
d) None
e) Don’t know

PollEV Question #3

Presenter Notes
Presentation Notes
This example shows off C’s for loops and if conditions. If you’re familiar with Java, these should look pretty familiar. Read more about control flow in C https://www.cs.cornell.edu/courses/cs3410/2025sp/rsrc/c/control.html

Printing: print_int_neg.c
#include <stdio.h>
#include <stdint.h>

int8_t flip(int8_t num) {
 return ~num + 1;
}

int main() {
 for (int8_t i = -128; i <= 127; ++i) {
 printf("i = %hhd\n", i);

 int8_t negated = -i;
 int8_t flipped = flip(i);
 if(negated != flipped) {
 printf("mismatch\n")}
 }
 }
 return 0;
} 22

Which numbers do not match; i.e.
negated != flipped?

a) -128
b) 127
c) All
d) None
e) Don’t know

PollEV Question #3

Presenter Notes
Presentation Notes
This example shows off C’s for loops and if conditions. If you’re familiar with Java, these should look pretty familiar. Read more about control flow in C https://www.cs.cornell.edu/courses/cs3410/2025sp/rsrc/c/control.html

overflow.c
#include <stdio.h>
#include <stdint.h>

int main() {
 int8_t num = 0;

 for (int8_t i = 0; i < 500; ++i) {
num += 1;

 printf("num = %hhd\n", i);
 }

 return 0;
} 23

What is the value of num printed
by the printf when i is 127? 128?
255? 256?

a) 127, 128, 255, 256
b) 127, 0, 127, 0,
c) 127, 128, 255, -256
d) 127, 128, 255, 0
e) 127, -128, -1, 0
f) Undefined behavior
g) Don’t know

PollEV Question #4

Presenter Notes
Presentation Notes
Computer representations of integers (usually) have a fixed width, i.e., the number of bits they use: for example, int8_t always has 8 bits. This has some fun consequences.

In our last example, we had to think through the minimum and maximum values you can store in an int8_t. What happens if you exceed this value?

The C language has pretty annoying rules about this. For signed numbers, it is actually a silent error (a concept known as undefined behavior) to exceed the maximum, e.g., to add 1 to the biggest possible signed number. But it’s legal to do this for unsigned numbers. So we’ll try it out with the type uint8_t, which is the unsigned (only-positive) version of our friend int8_t. Here’s a loop that just adds 1 to an int8_t value many times:

Answer: E (undefined)
Other possible answer, C (127, 128, 255, -256)

overflow.c
#include <stdio.h>
#include <stdint.h>

int main() {
 int8_t num = 0;

 for (int8_t i = 0; i < 500; ++i) {
num += 1;

 printf("num = %hhd\n", i);
 }

 return 0;
} 24

What is the value of num printed
by the printf when i is 127? 128?
255? 256?

a) 127, 128, 255, 256
b) 127, 0, 127, 0,
c) 127, 128, 255, -256
d) 127, 128, 255, 0
e) 127, -128, -1, 0
f) Undefined behavior
g) Don’t know

PollEV Question #4

Presenter Notes
Presentation Notes
Computer representations of integers (usually) have a fixed width, i.e., the number of bits they use: for example, int8_t always has 8 bits. This has some fun consequences.

In our last example, we had to think through the minimum and maximum values you can store in an int8_t. What happens if you exceed this value?

The C language has pretty annoying rules about this. For signed numbers, it is actually a silent error (a concept known as undefined behavior) to exceed the maximum, e.g., to add 1 to the biggest possible signed number. But it’s legal to do this for unsigned numbers. So we’ll try it out with the type uint8_t, which is the unsigned (only-positive) version of our friend int8_t. Here’s a loop that just adds 1 to an int8_t value many times:

Answer: E (undefined)
Other possible answer, C (127, -128, -1, 0)

overflow.c
#include <stdio.h>
#include <stdint.h>

int main() {
 int8_t num = 0;

 for (int8_t i = 0; i < 500; ++i) {
num += 1;

 printf("num = %hhu\n", i);
 }

 return 0;
} 25

Presenter Notes
Presentation Notes
If you run this program, you’ll see the number counting up from 1. When we reach 255, adding 1 takes us right back down to 0.

It can be helpful to think about the bits. 255 is the all-ones bit pattern: in 8 bits, 1111 1111. (Sometimes it’s helpful to put spaces in your binary numbers to group together 4 bits, just for legibility.) Adding one to this will “carry” all the way across, setting every bit to zero. The last carry bit would go in position 9, but because this is an 8-bit representation, the computer just drops that bit. And so, the result of the addition 1111 1111 + 0000 0001 is 0000 0000.

This behavior is called integer overflow (https://en.wikipedia.org/wiki/Integer_overflow)and it is the source of many fun bugs in all kinds of software. Memorably, YouTube originally used a signed 32-bit number (i.e., an int) to represent the number of views for a video. That meant that the largest number of views that any video could have was 232−1−1, or 2,147,483,647 views. The first video to exceed this number of views was PSY’s “Gangnam Style.” (https://www.youtube.com/watch?v=cGc_NfiTxng) YouTube made a cute announcement when they had to change that value to a 64-bit integer. That should be plenty of views for a long time (more than 9 quintillion views): https://www.theatlantic.com/technology/archive/2014/12/how-gangnam-style-broke-youtube/383389/

Prototypes, Headers, Libraries
#include <stdio.h>

void greet(const char* name) {
 printf("Hello, %s!\n", name);
}

int main() {
 greet("3410");
}

26

Declarations must precede use

Presenter Notes
Presentation Notes
There is a lot more to explore about C programming that you will learn through doing assignments in 3410. But here is one more concept I think will be helpful to see early.

(As an aside, void is the “return type” you use for functions that don’t return anything, and const char* is the type of a string literal. We’ll learn more about why the * is in there later in the course.)

Prototypes, Headers, Libraries
#include <stdio.h>

int main() {
 greet("3410");
}

void greet(const char* name) {
 printf("Hello, %s!\n", name);
}

27

must declare before use

Presenter Notes
Presentation Notes
A fun quirk about C is that it wants declarations to come before uses. That means that it won’t work to call greet before we define it, like in this broken program:

Prototypes, Headers, Libraries
#include <stdio.h>

void greet(const char* name);

int main() {
 greet("3410");
}

void greet(const char* name) {
 printf("Hello, %s!\n", name);
}

28

Prototype a.k.a Declarations

Presenter Notes
Presentation Notes
As you can imagine, this restriction can get frustrating, and unworkable if you need mutual recursion. The way to fix it is to use a prototype, a.k.a. a declaration. A function declaration looks a lot like a function definition but omits the body. So this program works:

We just need to copy and paste the “signature” part of the function definition, put it at the top of the file, and add a semicolon. That makes it a declaration that means that the call to greet is legal.

Header file: greet.h

void greet(const char* name);

29

Presenter Notes
Presentation Notes
The need for these declarations is so common that programmers typically put them in a whole separate C source code file, called a header file. Header files are C files that, by convention, end with a .h instead of a .c and mostly just contain declarations. So we might put the declaration in greet.h:

Prototypes, Headers, Libraries
#include <stdio.h>
#include "greet.h"

int main() {
 greet("3410");
}

void greet(const char* name) {
 printf("Hello, %s!\n", name);
}

30

Presenter Notes
Presentation Notes
The need for these declarations is so common that programmers typically put them in a whole separate C source code file, called a header file. Header files are C files that, by convention, end with a .h instead of a .c and mostly just contain declarations. So we might put the declaration in greet.h:

We can use this declaration by #include-ing it:

Notice the difference between the #include <stdio.h> line and the #include "greet.h" line. The angle brackets search for built-in library headers; the quotation marks are for header files you write yourself and tell the compiler to look in the same directory as the source file.

In either case, #include works a lot like just “copying and pasting” the entire text of the file into your source program. So #include-ing greet.h looks the same to the compiler as a version that just includes the declaration right there.

Separating files: greet.c
#include <stdio.h>
#include "greet.h"

void greet(const char* name) {
 printf("Hello, %s!\n", name);
}

31

Presenter Notes
Presentation Notes
Headers are also part of the mechanism that lets you break up long .c source files
.
Let’s say we want to create a separate greet.c library that just contains our greeting function:

Separating files: main.c
#include <stdio.h>
#include "greet.h"

int main() {
 greet("3410");
}

32

Presenter Notes
Presentation Notes
By “copying and pasting” the contents of greet.h here, the #include sorta works as a way to “import” the greet function so we can use it in main.

Compile and link

Compile .c files together

Compile [on 3410 infrastructure]
 $ rv gcc main.c greet.c -o main

Execute [on 3410 infrastructure]
 $ rv qemu main

33

Presenter Notes
Presentation Notes
Now, however, we need a way to combine the two .c files into a single executable. One option is to just give both source files on the command line:

Notice that we don’t list header files when compiling the whole thing: only .c files, not .h files. Header files are just for #include-ing into other files, so the compiler already sees the contents of those files implicitly.

Compile and link
Or,
Compile .c files separately, then link them together

Compile [on 3410 infrastructure]
 $ rv gcc –c main.c -o main.o
 $ rv gcc –c greet.c -o greet.o
 $ rv gcc main.o greet.o -o main

Execute [on 3410 infrastructure]
 $ rv qemu main

34

Presenter Notes
Presentation Notes
There’s another way too: it can be useful to compile the .c files separately and then link them together.

The first two lines, with -c, compile the source files to object files that end in .o. Then, the last command links the two object files together into an executable.

Separating it out this way can save you time.
E.g. if you only change greet.c, for example, then you only need to re-compile that file and then re-link; you can skip re-compiling the unchanged main.c.

	Programming in C
	What's your background in C?
	Why C?
	After All These Years, the World is Still Powered by C Programming
	Why is C Still Used?
	Why is C Still Used?
	C is 100% WYSIWYG*
	Goals for today
	Getting started: minimal.c
	Getting started: minimal.c
	Getting started: minimal.c
	Printing: hello.c
	Printing: hello.c
	Printing: hello.c
	Printing: print_int.c
	Printing: print_int.c
	Printing: print_int_neg.c
	Poll Everywhere free text poll activity
Activity Title: What is the value of n if we flip the most significant bit from 0 to 1?
Slide 2
	Printing: print_int_neg.c
	Printing: print_int_neg.c
	Printing: print_int_neg.c
	Printing: print_int_neg.c
	overflow.c
	overflow.c
	overflow.c
	Prototypes, Headers, Libraries
	Prototypes, Headers, Libraries
	Prototypes, Headers, Libraries
	Header file: greet.h
	Prototypes, Headers, Libraries
	Separating files: greet.c
	Separating files: main.c
	Compile and link
	Compile and link

