1+1 = 2 ... in hardware!

CS 3410: Computer System Organization and Programming

[K. Bala, A. Bracy, E. Sirer, Z. Susag, and H. Weatherspoon]

Do not modify the notes in this section to avoid tampering with the Poll Everywhere activity.

More info at polleverywhere.com/support

What is \$\$2^{10}\$\$?

https://www.polleverywhere.com/multiple_choice_polls/NFsS8idj7KZQeYGoidpJZ?state=opened&flow=Default&onscreen=persist

Goals for Today

- Number representations
 - How to translate between different **bases**
- Addition
 - How to construct simple **binary** adders

Number Representations

Most computers represent exactly 2 symbols:

• "high voltage" = 1 = true; "low voltage" = 0 = false

Number Representations

Most computers represent exactly 2 symbols:

"high voltage" = 1 = true; "low voltage" = 0 = false
 How do we represent numbers in Binary? (base 2)
 How do we do it for decimal? (base 10)

Counting in Different Bases

DEC (Base 10)	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
BIN (Base 2)	0	1	10	11	100	101	110	111	1000	1001	1010	1011	1100	1101	1110	1111	10000	10001	10010
OCT (Base 8)	0	1	2	3	4	5	6	7	10	11	12	13	14	15	16	17	20	21	22
HEX (Base 16)	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F	10	11	12

Counting in Different Bases

DEC (Base 10)	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
BIN (Base 2)	0	1	10	11	100	101	110	111	1000	1001	1010	1011	1100	1101	1110	1111	10000	10001	10010
OCT (Base 8)	0	1	2	3	4	5	6	7	10	11	12	13	14	15	16	17	20	21	22
HEX (Base 16)	0	1	2	3	4	5	6	7	8	9	Α	В	5		p	RO TI	bi		12

0b 1111 1111 = 255

0o 77 = 63

0b 1 0000 0000 = 256

0o 100 = 64

0x ff = 255

0x 100 = 256

Converting between bases: $637_{10} \rightarrow \text{octal}$

Approach #1: Left to Right

83	8 ²	81	80
512	64	8	1
1	1	7	5

Approach #2: Right to Left (repetitive division) lsb (least significant bit*)

637 / 8 = 79 remainder 5

79/8=9 remainder 7

9/8=1 remainder 1

1/8=0 remainder 1

637 = 001175

msb (most significant bit*)

Try 637₁₀ → binary! (using both methods)

Poll Everywhere Question #2:

Convert the number 657₁₀ to base 16 What is the least significant digit of this number?

- a) D
- b) F
- c) 0
- d) 1
- e) 11

657 = 0x291

Answer is D: 1

Do not modify the notes in this section to avoid tampering with the Poll Everywhere activity.

More info at polleverywhere.com/support

Convert the number \$\$657_{10}\$\$ to base 16. What is the least significant digit? https://www.polleverywhere.com/free_text_polls/x9CIvT5ndcQas5SAuWVxs

Convert from Binary to other powers of 2

3 binary digits = 1 octal 4 binary digits = 1 hex

• 3 bits (000—111) have values 0...7 = 1 octal digit example: **0b 1 001 111 101**

 $1 \quad 1 \quad 7 \quad 5 \rightarrow 001175$

• Binary to Hexadecimal

• **Nibble** (0000—1111) has values 0...15 = 1 hex digit

example: **0b 10 0111 1101 2 7** d

7 d \rightarrow 0x27d

4 binary digits = 1 hex = nibble

Ask class to convert from binary to octal

637 = 0o1175 = 0b10 0111 1101 = 0x27D

oct: 637: 79:9:1:0

bin: 637: 318: 159: 79: 39: 19: 9: 4: 2: 1: 0

hex: 637:39:2:0

Achievement Unlocked!

There are 10 types of people in the world:

- Those who understand binary
- And those who do not
- And those who know this joke is in base 3

Goals for Today

- Number representations
 - How to translate between different **bases** (Next Monday we'll see how computers use binary representation)
- Addition
 - How to construct simple **binary** adders

Binary Addition

Addition works the same for all bases

- Add the digits in each position
- Propagate the carry

Binary addition is pretty easy

- · Combine two bits at a time
- Along with a carry

```
183
+ 254
437

Carry-in
(of 4<sup>th</sup> bit)
111 Carry-out
001110
(of 3<sup>rd</sup> bit)
+ 011100
101010
```


Talk about Cin (carry in) and Cout (carry out) Animate this better Add another slide So we need two numbers, the sum, carry in, and carry out

Goals for Today

- Number representations
 - How to translate between different **bases** (Next Monday we'll see how computers use binary representation)
- Addition
 - How to construct simple **binary** adders

