
Hakim Weatherspoon
CS 3410

Computer Science
Cornell University

The slides are the product of many rounds of teaching CS 3410 by
Professors Weatherspoon, Bala, Bracy, McKee, and Sirer.

Write-
BackMemory

Instruction
Fetch Execute

Instruction
Decode

extend

register
file

control

alu

memory

din dout

addr
PC

memory

new
pc

in
st

IF/ID ID/EX EX/MEM MEM/WB

im
m

B
A

ct
rl

ct
rl

ct
rl

B
D D

M

compute
jump/branch

targets

+4

forward
unit

detect
hazard

3

int x = 10;
x = 2 * x + 15;

C
compiler

addiu r5, r0, 10
muli r5, r5, 2
addiu r5, r5, 15

MIPS
assembly

00100000000001010000000000001010
00000000000001010010100001000000
00100000101001010000000000001111

machine
code

assembler

CPU

Circuits

Gates

Transistors

Silicon

op = addiu r0 r5 10

op = addiu r5 r5 15

op = r-type r5 r5 shamt=1 func=sll

r0 = 0
r5 = r0 + 10
r5 = r5<<1 #r5 = r5 * 2
r5 = r15 + 15

Calling Convention for Procedure Calls
Enable code to be reused by allowing code
snippets to be invoked

Will need a way to
• call the routine (i.e. transfer control to procedure)
• pass arguments

– fixed length, variable length, recursively

• return to the caller
– Putting results in a place where caller can find them

• Manage register

Transfer Control
• Caller  Routine
• Routine  Caller

Pass Arguments to and from the routine
• fixed length, variable length, recursively
• Get return value back to the caller

Manage Registers
• Allow each routine to use registers
• Prevent routines from clobbering each others’ data

What is a Convention?
Warning: There is no one true MIPS calling convention.

lecture != book != gcc != spim != web 5

Write-
BackMemory

Instruction
Fetch Execute

Instruction
Decode

extend

register
file

control

alu

memory

din dout

addr
PC

memory

new
pc

in
st

IF/ID ID/EX EX/MEM MEM/WB

im
m

B
A

ct
rl

ct
rl

ct
rl

B
D D

M

compute
jump/branch

targets

+4

forward
unit

detect
hazard

How do we share registers and use memory when making procedure calls?

• first four arg words passed in $a0, $a1, $a2, $a3
• remaining arg words passed in parent’s stack frame
• return value (if any) in $v0, $v1
• stack frame at $sp

– contains $ra (clobbered on JAL
to sub-functions)
– contains local vars (possibly
clobbered by sub-functions)
– contains extra arguments to sub-functions
– contains space for first 4 arguments
to sub-functions

• callee save regs
are preserved

• caller save regs
are not

• Global data accessed via $gp

saved ra
saved fp

saved regs
($s0 ... $s7)

locals

outgoing
args

$fp

$sp 

Return address: $31 (ra)
Stack pointer: $29 (sp)
Frame pointer: $30 (fp)
First four arguments: $4-$7 (a0-a3)
Return result: $2-$3 (v0-v1)
Callee-save free regs: $16-$23 (s0-s7)
Caller-save free regs: $8-$15,$24,$25 (t0-t9)
Reserved: $26, $27
Global pointer: $28 (gp)
Assembler temporary: $1 (at)

r0 $zero zero
r1 $at assembler temp
r2 $v0 function

return valuesr3 $v1
r4 $a0

function
arguments

r5 $a1
r6 $a2
r7 $a3
r8 $t0

temps
(caller save)

r9 $t1
r10 $t2
r11 $t3
r12 $t4
r13 $t5
r14 $t6
r15 $t7

r16 $s0

saved
(callee save)

r17 $s1
r18 $s2
r19 $s3
r20 $s4
r21 $s5
r22 $s6
r23 $s7
r24 $t8 more temps

(caller save)r25 $t9
r26 $k0 reserved for

kernelr27 $k1
r28 $gp global data pointer
r29 $sp stack pointer
r30 $fp frame pointer
r31 $ra return address

Transfer Control
• Caller  Routine
• Routine  Caller

Pass Arguments to and from the routine
• fixed length, variable length, recursively
• Get return value back to the caller

Manage Registers
• Allow each routine to use registers
• Prevent routines from clobbering each others’ data

What is a Convention?
Warning: There is no one true MIPS calling convention.

lecture != book != gcc != spim != web 10

int main (int argc, char* argv[]) {
int n = 9;
int result = myfn(n);

}

int myfn(int n) {
int f = 1;
int i = 1;
int j = n – 1;
while(j >= 0) {

f *= i;
i++;
j = n - i;

}
return f;

}

main:
j myfn

after1:
add $1,$2,$3

myfn:
…

…
j after1

Jumps to the callee
Jumps back

1

2

12

main:
j myfn

after1:
add $1,$2,$3

j myfn
after2:

sub $3,$4,$5

myfn:
…

…
j after1

Jumps to the callee
Jumps back
What about multiple sites?

??? Change target
on the fly ???

j after2

1

2

3

4

13

JAL (Jump And Link) instruction moves a new value
into the PC, and simultaneously saves the old
value in register $31 (aka $ra or return address)

Thus, can get back from the subroutine to the
instruction immediately following the jump by
transferring control back to PC in register $31

JAL saves the PC in register $31
Subroutine returns by jumping to $31

r31

main:
jal myfn

after1:
add $1,$2,$3

jal myfn
after2:

sub $3,$4,$5

myfn:
…

…
jr $31

1

2

15

First call

JAL saves the PC in register $31
Subroutine returns by jumping to $31
What happens for recursive invocations?

r31

main:
jal myfn

after1:
add $1,$2,$3

jal myfn
after2:

sub $3,$4,$5

myfn:
…

…
jr $31

1

2

4

3

16

Second call

int main (int argc, char* argv[]) {
int n = 9;
int result = myfn(n);

}

int myfn(int n) {
int f = 1;
int i = 1;
int j = n – 1;
while(j >= 0) {

f *= i;
i++;
j = n - i;

}
return f;

}

int main (int argc, char* argv[]) {
int n = 9;
int result = myfn(n);

}

int myfn(int n) {

if(n > 0) {
return n * myfn(n - 1);

} else {
return 1;

}
}

Problems with recursion:

r31

main:
jal myfn

after1:
add $1,$2,$3

myfn:
if (test)
jal myfn

after2:

jr $31

1

19

First call

Problems with recursion:

r31

main:
jal myfn

after1:
add $1,$2,$3

myfn:
if (test)
jal myfn

after2:

jr $31

1
2

20

Recursive Call

Problems with recursion:

r31

main:
jal myfn

after1:
add $1,$2,$3

myfn:
if (test)
jal myfn

after2:

jr $31

1
2

3

21

Return from Recursive Call

Call stack
• contains activation records

(aka stack frames)

Each activation record contains
• the return address for that invocation
• the local variables for that procedure

A stack pointer (sp) keeps track of the
top of the stack

• dedicated register ($29) on the MIPS
Manipulated by push/pop operations

• push: move sp down, store
• pop: load, move sp up

after1

high mem

low mem

$31 =
sp

Write-
BackMemory

Instruction
Fetch Execute

Instruction
Decode

extend

register
file

control

alu

memory

din dout

addr
PC

memory

new
pc

in
st

IF/ID ID/EX EX/MEM MEM/WB

im
m

B
A

ct
rl

ct
rl

ct
rl

B
D D

M

compute
jump/branch

targets

+4

forward
unit

detect
hazard

Call stack
• contains activation records

(aka stack frames)

Each activation record contains
• the return address for that invocation
• the local variables for that procedure

A stack pointer (sp) keeps track of the
top of the stack

• dedicated register ($29) on the MIPS
Manipulated by push/pop operations

• push: move sp down, store
• pop: load, move sp up

sp

after1

after2

high mem

low mem

Push: ADDIU $sp, $sp, -4
SW $31, 0 ($sp)

$31 =

$31 =
sp

Call stack
• contains activation records

(aka stack frames)

Each activation record contains
• the return address for that invocation
• the local variables for that procedure

A stack pointer (sp) keeps track of the
top of the stack

• dedicated register ($29) on the MIPS
Manipulated by push/pop operations

• push: move sp down, store
• pop: load, move sp up

sp

after1

after2

high mem

low mem

Push: ADDIU $sp, $sp, -4
SW $31, 0 ($sp)

Pop: LW $31, 0 ($sp)
ADDIU $sp, $sp, 4
JR $31

$31 =

$31 =
sp

Stack used to save and restore contents of $31

sp

after1

after2

high mem

low mem

after2

after2sp

sp

main:
jal myfn

after1:
add $1,$2,$3

myfn:
addiu $sp,$sp,-4
sw $31, 0($sp)
if (test)

jal myfn
after2:

lw $31, 0($sp)
addiu $sp,$sp,4
jr $31

21

Stack used to save and restore contents of $31

sp

after1

after2

high mem

low mem

after2

after2sp

sp

main:
jal myfn

after1:
add $1,$2,$3

myfn:
addiu $sp,$sp,-4
sw $31, 0($sp)
if (test)

jal myfn
after2:

lw $31, 0($sp)
addiu $sp,$sp,4
jr $31

21

(Call) Stacks start at a high address in memory

Stacks grow down as frames are pushed on
• Note: data region starts at a low address and grows up
• The growth potential of stacks and data region are not

artificially limited

top

bottom

system reserved

stack

system reserved

.data

.text

0xfffffffc

0x00000000

0x7ffffffc
0x80000000

0x10000000

0x00400000
code (text)

static data

dynamic data (heap)

0xfffffffc

0x00000000

top

bottom

0x7ffffffc
0x80000000

0x10000000

0x00400000

system reserved

stack

system reserved

code (text)

static data

dynamic data (heap)

“Data Memory”

“Program Memory”

30

Write-
BackMemory

Instruction
Fetch Execute

Instruction
Decode

extend

register
file

control

alu

memory

din dout

addr
PC

memory

new
pc

in
st

IF/ID ID/EX EX/MEM MEM/WB

im
m

B
A

ct
rl

ct
rl

ct
rl

B
D D

M

compute
jump/branch

targets

+4

forward
unit

detect
hazard Stack, Data, Code

Stored in Memory

$29 ($sp)
$31 ($ra)

Stack, Data, Code
Stored in Memory

0xfffffffc

0x00000000

top

bottom

0x7ffffffc
0x80000000

0x10000000

0x00400000

system reserved

stack

system reserved

code (text)

static data

dynamic data (heap)

“Data Memory”

“Program Memory”

32

Stack contains stack frames (aka “activation records”)
• 1 stack frame per dynamic function
• Exists only for the duration of function
• Grows down, “top” of stack is $sp, r29
• Example: lw $r1, 0($sp) puts word at top of stack into $r1
Each stack frame contains:

• Local variables, return address (later), register
backups (later) myfn stack frame

myfn stack framesystem reserved

stack

system reserved

code
static data

heap

main stack frame

int main(…) {
...

myfn(x);
}
int myfn(int n) {

...

myfn();
}

$sp

33

Heap holds dynamically allocated memory
• Program must maintain pointers to anything allocated

• Example: if $r3 holds x
• lw $r1, 0($r3) gets first word x points to

• Data exists from malloc() to free()

2000 bytes

1000 bytes

system reserved

stack
x
y
z

system reserved

code
static data

heap

3000 bytes

void some_function() {
int *x = malloc(1000);
int *y = malloc(2000);
free(y);
int *z = malloc(3000);

}

34

Data segment contains global variables
• Exist for all time, accessible to all routines
• Accessed w/global pointer

• $gp, r28, points to middle of segment
• Example: lw $r1, 0($gp) gets middle-most word

(here, max_players)

system reserved

stack

system reserved

code
static data

heap

int max_players = 4;

int main(...) {
...

}

gp 4

35

int n = 100;
int main (int argc, char* argv[]) {

int i, m = n, sum = 0;
int* A = malloc(4*m + 4);
for (i = 1; i <= m; i++) {

sum += i; A[i] = sum; }
printf ("Sum 1 to %d is %d\n", n, sum);

}

Variables Visibility Lifetime Location

Function-Local

Global

Dynamic

36

JAL (Jump And Link) instruction moves a new value
into the PC, and simultaneously saves the old
value in register $31 (aka $ra or return address)
Thus, can get back from the subroutine to the
instruction immediately following the jump by
transferring control back to PC in register $31

Need a Call Stack to return to correct calling
procedure. To maintain a stack, need to store an
activation record (aka a “stack frame”) in memory.
Stacks keep track of the correct return address by
storing the contents of $31 in memory (the stack).

Transfer Control
• Caller  Routine
• Routine  Caller

Pass Arguments to and from the routine
• fixed length, variable length, recursively
• Get return value back to the caller

Manage Registers
• Allow each routine to use registers
• Prevent routines from clobbering each others’ data

38

Need consistent way of passing arguments and
getting the result of a subroutine invocation

Need consistent way of passing arguments and
getting the result of a subroutine invocation

Given a procedure signature, need to know where
arguments should be placed

• int min(int a, int b);
• int subf(int a, int b, int c, int d, int e);
• int isalpha(char c);
• int treesort(struct Tree *root);
• struct Node *createNode();
• struct Node mynode();

Too many combinations of char, short, int, void *, struct, etc.
• MIPS treats char, short, int and void * identically

First four arguments:
passed in registers $4-$7

• aka $a0, $a1, $a2, $a3

Returned result:
passed back in a register

• Specifically, $2, aka $v0
main:

li $a0, 6
li $a1, 7
jal myfn
addiu $r1, $v0, 2

main() {
int x = myfn(6, 7);
x = x + 2;

}

Note: This is not the entire story for 1-4 arguments.
Please see the Full Story slides.

41

• args passed in $a0, $a1, $a2, $a3
• return value (if any) in $v0, $v1
• stack frame at $sp

– contains $ra (clobbered on JAL to sub-functions)

Q: What about argument lists?

First four arguments:
passed in $4-$7

• aka $a0-$a3

Subsequent arguments:
”spill” onto the stack

main:
li $a0, 0
li $a1, 1
li $a2, 2
li $a3, 3
addiu $sp,$sp,-8
li $8, 4
sw $8, 0($sp)
li $8, 5
sw $8, 4($sp)
jal myfn

main() {
myfn(0,1,2,3,4,5);
…

}

Note: This is not the entire story for 5+ arguments.
Please see the Full Story slides.

sp

5
4

sp

43

Arguments 1-4:
passed in $4-$7
room on stack

Arguments 5+:
placed on stack

main:
li $a0, 0
li $a1, 1
li $a2, 2
li $a3, 3
addiu $sp,$sp,-24
li $8, 4
sw $8, 16($sp)
li $8, 5
sw $8, 20($sp)
jal myfn

main() {
myfn(0,1,2,3,4,5);
…

}

sp

sp

4
space for a3
space for a2
space for a1
space for a0

5

0($sp)

4($sp)

8($sp)

12($sp)

16($sp)

20($sp)

Stack decremented by
max(16, #args x 4)
Here: max (16, 24) = 24

44

• Consistent way of passing arguments to and
from subroutines

• Creates single location for all arguments
• Caller makes room for $a0-$a3 on stack
• Callee must copy values from $a0-$a3 to stack
 callee may treat all args as an array in memory

• Particularly helpful for functions w/ variable length
inputs: printf(“Scores: %d %d %d\n”, 1, 2, 3);

• Aside: not a bad place to store inputs if callee
needs to call a function (your input cannot stay
in $a0 if you need to call another function!)

45

4
space for a3
space for a2
space for a1
space for a0

5

blue() {
pink(0,1,2,3,4,5);

}

blue’s Ret Addr

sp

blue’s
stack
frame

46

sp

4
space for a3
space for a2
space for a1
space for a0

5

pink’s Ret Addr

blue() {
pink(0,1,2,3,4,5);

}
pink(int a, int b, int c, int d, int e, int f) {

…
}

blue’s Ret Addr

pink’s
stack
frame

sp

sp

blue’s
stack
frame

Notice
• Pink’s arguments are on blue’s stack
• sp changes as functions call other

functions, complicates accesses
 Convenient to keep pointer to
bottom of stack == frame pointer

$30, aka $fp
can be used to restore $sp on exit fp

47

• first four arg words passed in $a0, $a1, $a2, $a3
• remaining arg words passed in parent’s stack frame
• return value (if any) in $v0, $v1
• stack frame ($fp to $sp) contains:

– $ra (clobbered on JAL to sub-functions)
– space for 4 arguments to Callees
– arguments 5+ to Callees

r0 $zero zero
r1 $at assembler temp
r2
r3
r4
r5
r6
r7
r8
r9

r10
r11
r12
r13
r14
r15

r16
r17
r18
r19
r20
r21
r22
r23
r24
r25
r26 $k0 reserved

for OS kernelr27 $k1
r28
r29
r30
r31 $ra return address

$v0 function
return values$v1

$a0
function

arguments
$a1
$a2
$a3

Pseudo-Instructions
e.g. BLZ

SLT $at
BNE $at, 0, L

C allows passing whole structs
• int dist(struct Point p1, struct Point p2);

• Treated as collection of consecutive 32-bit arguments
– Registers for first 4 words, stack for rest

• Better: int dist(struct Point *p1, struct Point *p2);

Where are the arguments to:
void sub(int a, int b, int c, int d, int e);
void isalpha(char c);
void treesort(struct Tree *root);

Where are the return values from:
struct Node *createNode();
struct Node mynode();

Many combinations of char, short, int, void *, struct, etc.
• MIPS treats char, short, int and void * identically

Global variables are allocated in the “data” region of the
program

• Exist for all time, accessible to all routines

Local variables are allocated within the stack frame
• Exist solely for the duration of the stack frame

Dangling pointers are pointers into a destroyed stack
frame

• C lets you create these, Java does not
• int *foo() { int a; return &a; }

How does a function load global data?
• global variables are just above 0x10000000

Convention: global pointer
• $28 is $gp (pointer into middle of global data section)

$gp = 0x10008000
• Access most global data using LW at $gp +/- offset

LW $v0, 0x8000($gp)
LW $v1, 0x7FFF($gp)

0xfffffffc

0x00000000

top

bottom

0x7ffffffc
0x80000000

0x10000000

0x00400000

system reserved

stack

system reserved

$gp

code (text)

static data

dynamic data (heap)

It is often cumbersome to keep track of location of data
on the stack

• The offsets change as new values are pushed onto and
popped off of the stack

Keep a pointer to the bottom of the top stack frame
• Simplifies the task of referring to items on the stack

A frame pointer, $30, aka $fp
• Value of $sp upon procedure entry
• Can be used to restore $sp on exit

• first four arg words passed in $a0-$a3
• remaining args passed in parent’s stack frame
• return value (if any) in $v0, $v1
• stack frame ($fp to $sp) contains:

• $ra (clobbered on JALs)
• space for 4 arguments to Callees
• arguments 5+ to Callees

• global data accessed via $gp

Transfer Control
• Caller  Routine
• Routine  Caller

Pass Arguments to and from the routine
• fixed length, variable length, recursively
• Get return value back to the caller

Manage Registers
• Allow each routine to use registers
• Prevent routines from clobbering each others’ data

56

What convention should we use to share use of
registers across procedure calls?

Functions:
• Are compiled in isolation
• Make use of general purpose registers
• Call other functions in the middle of their execution

• These functions also use general purpose registers!
• No way to coordinate between caller & callee

 Need a convention for register management

58

Registers that the caller cares about: $t0… $t9
About to call a function?
• Need value in a t-register after function returns?

 save it to the stack before fn call
 restore it from the stack after fn returns

• Don’t need value?  do nothing

Functions
• Can freely use these registers
• Must assume that their contents
are destroyed by other functions

void myfn(int a) {
int x = 10;
int y = max(x, a);
int z = some_fn(y);
return (z + y);

}

Suppose:
$t0 holds x
$t1 holds y
$t2 holds z

Where do we save and restore?

60

Registers a function intends to use: $s0… $s9
About to use an s-register? You MUST:
• Save the current value on the stack before using
• Restore the old value from the stack before fn returns

Functions
• Must save these registers before

using them
• May assume that their contents

are preserved even across fn calls

void myfn(int a) {
int x = 10;
int y = max(x, a);
int z = some_fn(y);
return (z + y);

}

Suppose:
$s0 holds x
$s1 holds y
$s2 holds z

Where do we save and restore?

61

Assume the registers are free for the
taking, use with no overhead

Since subroutines will do the same,
must protect values needed later:

Save before fn call
Restore after fn call

Notice: Good registers to use if you
don’t call too many functions or if the
values don’t matter later on anyway.

main:
…
[use $8 & $9]
…
addiu $sp,$sp,-8
sw $9, 4($sp)
sw $8, 0($sp)
jal mult
lw $9, 4($sp)
lw $8, 0($sp)
addiu $sp,$sp,8
…
[use $8 & $9]

62

Assume the registers are free for the
taking, use with no overhead

Since subroutines will do the same,
must protect values needed later:

Save before fn call
Restore after fn call

Notice: Good registers to use if you
don’t call too many functions or if the
values don’t matter later on anyway.

main:
…
[use $t0 & $t1]
…
addiu $sp,$sp,-8
sw $t1, 4($sp)
sw $t0, 0($sp)
jal mult
lw $t1, 4($sp)
lw $t0, 0($sp)
addiu $sp,$sp,8
…
[use $t0 & $t1]

63

Assume caller is using the registers
Save on entry
Restore on exit

Notice: Good registers to use if you make a
lot of function calls and need values that
are preserved across all of them.
Also, good if caller is actually using the
registers, otherwise the save and restores
are wasted. But hard to know this.

main:
addiu $sp,$sp,-32
sw $31,28($sp)
sw $30, 24($sp)
sw $17, 20($sp)
sw $16, 16($sp)
addiu $fp, $sp, 28

…
[use $16 and $17]

…
lw $31,28($sp)
lw $30,24($sp)
lw $17, 20$sp)
lw $16, 16($sp)
addiu $sp,$sp,32
jr $31 64

Assume caller is using the registers
Save on entry
Restore on exit

Notice: Good registers to use if you make a
lot of function calls and need values that
are preserved across all of them.
Also, good if caller is actually using the
registers, otherwise the save and restores
are wasted. But hard to know this.

main:
addiu $sp,$sp,-32
sw $ra,28($sp)
sw $fp, 24($sp)
sw $s1, 20($sp)
sw $s0, 16($sp)
addiu $fp, $sp, 28

…
[use $s0 and $s1]

…
lw $ra,28($sp)
lw $fp,24($sp)
lw $s1, 20$sp)
lw $s0, 16($sp)
addiu $sp,$sp,32
jr $ra 65

Assume a function uses two callee-
save registers.
How do we allocate a stack frame?
How large is the stack frame?
What should be stored in the stack
frame?
Where should everything be
stored?

saved ra
saved fp

saved regs
($s0 ... $s7)

locals

outgoing
args

fp 

sp 

66

ADDIU $sp, $sp, -32 # allocate frame
SW $ra, 28($sp) # save $ra
SW $fp, 24($sp) # save old $fp
SW $s1, 20($sp) # save ...
SW $s0, 16($sp) # save ...
ADDIU $fp, $sp, 28 # set new frame ptr
… ...
BODY
… ...
LW $s0, 16($sp) # restore …
LW $s1, 20($sp) # restore …
LW $fp, 24($sp) # restore old $fp
LW $ra, 28($sp) # restore $ra
ADDIU $sp,$sp, 32 # dealloc frame
JR $ra

saved ra
saved fp

saved regs
($s0 ... $s7)

locals

outgoing
args

fp 

sp 

67

pink’s ra

blue() {
pink(0,1,2,3,4,5);

}
pink(int a, int b, int c, int d, int e, int f) {

int x;
orange(10,11,12,13,14);

}
orange(int a, int b, int c, int, d, int e) {

char buf[100];
gets(buf); // no bounds check!

}

What happens if more than 100 bytes
is written to buf?

saved regs
args for pink

blue’s fp

saved fp

saved regs

blue’s ra

pink’s
stack
frame

fp

blue’s
stack
frame

x
args for orange

sp

orange’s ra
pink’s fp

saved regs

orange
stack
frame

buf[100]

68

Return address: $31 (ra)
Stack pointer: $29 (sp)
Frame pointer: $30 (fp)
First four arguments: $4-$7 (a0-a3)
Return result: $2-$3 (v0-v1)
Callee-save free regs: $16-$23 (s0-s7)
Caller-save free regs: $8-$15,$24,$25 (t0-t9)
Reserved: $26, $27
Global pointer: $28 (gp)
Assembler temporary: $1 (at)

r0 $zero zero
r1 $at assembler temp
r2 $v0 function

return valuesr3 $v1
r4 $a0

function
arguments

r5 $a1
r6 $a2
r7 $a3
r8 $t0

temps
(caller save)

r9 $t1
r10 $t2
r11 $t3
r12 $t4
r13 $t5
r14 $t6
r15 $t7

r16 $s0

saved
(callee save)

r17 $s1
r18 $s2
r19 $s3
r20 $s4
r21 $s5
r22 $s6
r23 $s7
r24 $t8 more temps

(caller save)r25 $t9
r26 $k0 reserved for

kernelr27 $k1
r28 $gp global data pointer
r29 $sp stack pointer
r30 $fp frame pointer
r31 $ra return address

• first four arg words passed in $a0-$a3
• remaining args passed in parent’s stack frame
• return value (if any) in $v0, $v1
• stack frame ($fp to $sp) contains:

• $ra (clobbered on JALs)
• local variables
• space for 4 arguments to Callees
• arguments 5+ to Callees

• callee save regs: preserved
• caller save regs: not preserved
• global data accessed via $gp

saved ra
saved fp

saved regs
($s0 ... $s7)

locals

outgoing
args

$fp 

$sp  71

int test(int a, int b) {
int tmp = (a&b)+(a|b);
int s = sum(tmp,1,2,3,4,5);
int u = sum(s,tmp,b,a,b,a);
return u + a + b;

}

Correct Order:
1. Body First
2. Determine stack frame size
3. Complete Prologue/Epilogue

allocate frame
save $ra
save old $fp
callee save ...
callee save ...
set new frame ptr

...

...

restore …
restore …
restore old $fp
restore $ra
dealloc frame

test:

Can we optimize the assembly code at all?

How can we optimize
the assembly code?

int test(int a, int b) {
int tmp = (a&b)+(a|b);
int s = sum(tmp,1,2,3,4,5);
int u = sum(s,tmp,b,a,b,a);
return u + a + b;

}

allocate frame
save $ra
save old $fp
callee save ...
callee save ...
set new frame ptr

...

...
restore …
restore …
restore old $fp
restore $ra
dealloc frame

test:

saved ra
saved fp

saved regs
($s0 ... $s7)

locals

outgoing
args

$fp

$sp 

Leaf function does not invoke any other functions
int f(int x, int y) { return (x+y); }

Optimizations?

Given a running program (a process), how do we
know what is going on (what function is executing,
what arguments were passed to where, where is
the stack and current stack frame, where is the
code and data, etc)?

0xfffffffc

0x00000000

top

bottom

0x7ffffffc
0x80000000

0x10000000

0x00400000

system reserved

stack

system reserved

.data

.text
PCcode (text)

static data

dynamic data (heap)

init(): 0x400000
printf(s, …): 0x4002B4
vnorm(a,b): 0x40107C
main(a,b): 0x4010A0
pi: 0x10000000
str1: 0x10000004

0x00000000
0x004010c4

0x00000000

0x00000000

0x7FFFFFF4
0x00000000
0x00000000

0x0040010c

0x00000015
0x10000004
0x00401090

0x00000000

0x00000000

CPU:
$pc=0x004003C0
$sp=0x7FFFFFAC
$ra=0x00401090

0x7FFFFFB0

What func is running?
Who called it?
Has it called anything?
Will it?
Args?
Stack depth?
Call trace?

0x7FFFFFDC

• How to write and Debug a MIPS program using calling
convention

• first four arg words passed in $a0, $a1, $a2, $a3
• remaining arg words passed in parent’s stack frame
• return value (if any) in $v0, $v1
• stack frame ($fp to $sp) contains:

– $ra (clobbered on JAL to sub-functions)
– $fp
– local vars (possibly clobbered by sub-functions)
– contains extra arguments to sub-functions
(i.e. argument “spilling)
– contains space for first 4 arguments
to sub-functions

• callee save regs are preserved
• caller save regs are not
• Global data accessed via $gp

saved ra
saved fp

saved regs
($s0 ... $s7)

locals

outgoing
args

$fp

$sp 

	Calling Conventions
	Big Picture: Where are we now?
	Big Picture: Where are we going?
	Goals for this week
	Calling Convention for Procedure Calls
	Cheat Sheet and Mental Model for Today
	Cheat Sheet and Mental Model for Today
	MIPS Register
	MIPS Register Conventions
	Calling Convention for Procedure Calls
	How does a function call work?
	Jumps are not enough
	Jumps are not enough
	Takeaway1: Need Jump And Link
	Jump-and-Link / Jump Register
	Jump-and-Link / Jump Register
	JAL / JR for Recursion?
	JAL / JR for Recursion?
	JAL / JR for Recursion?
	JAL / JR for Recursion?
	JAL / JR for Recursion?
	Need a “Call Stack”
	Cheat Sheet and Mental Model for Today
	Need a “Call Stack”
	Need a “Call Stack”
	Need a “Call Stack”
	Need a “Call Stack”
	Stack Growth
	An executing program in memory
	An executing program in memory
	Anatomy of an executing program
	An executing program in memory
	The Stack
	The Heap
	Data Segment
	Globals and Locals
	Takeaway2: Need a Call Stack
	Calling Convention for Procedure Calls
	Next Goal
	Arguments & Return Values
	Simple Argument Passing (1-4 args)
	Conventions so far:
	Many Arguments (5+ args)
	Argument Passing: the Full Story
	Pros of Argument Passing Convention
	Frame Layout & the Frame Pointer
	Frame Layout & the Frame Pointer
	Conventions so far
	MIPS Register Conventions so far:
	C & MIPS: the fine print
	Globals and Locals
	Global and Locals
	Anatomy of an executing program
	Frame Pointer
	Conventions so far
	Calling Convention for Procedure Calls
	Next Goal
	Register Management
	Caller-saved
	Callee-saved
	Caller-Saved Registers in Practice
	Caller-Saved Registers in Practice
	Callee-Saved Registers in Practice
	Callee-Saved Registers in Practice
	Frame Layout on Stack
	Frame Layout on Stack
	Frame Layout on Stack
	MIPS Register Recap
	MIPS Register Conventions
	Convention recap so far
	Activity #1: Calling Convention Example
	Activity #2: Calling Convention Example: �Prologue, Epilogue
	Next Goal
	Activity #3: Calling Convention Example
	Activity #3: Calling Convention Example: �Prologue, Epilogue
	Minimum stack size for a standard function?
	Minimum stack size for a standard function?
	Leaf Functions
	Next Goal
	Anatomy of an executing program
	Activity #4: Debugging
	Convention Summary

