
Anne Bracy
CS 3410

Computer Science
Cornell University

[K. Bala, A. Bracy, S. McKee, E. Sirer, and H. Weatherspoon]

How does a processor interact with its environment?

Computer System =
Memory + Datapath + Control

Display

Keyboard Network

Disk

+ Input + Output

I/O connected with I/O Controllers
high-performance interconnect: processor, memory, display
lower-performance interconnect: disk, keyboard, network

Core0
Cache

Memory
Controller

I/O
Controller

High Performance
Interconnect

Core1
Cache

Memory

Display

I/O
Controller

Disk

I/O
Controller

Keyboard

I/O
Controller

Network

Lower Performance
Legacy InterconnectBridge

Processor – Memory (“Front Side Bus”)
• Short, fast, & wide
• Mostly fixed topology, designed as a “chipset”

– CPU + Caches + Interconnect + Memory Controller

I/O and Peripheral busses (PCI, SCSI, …)
• Longer, slower, & narrower
• Flexible topology, multiple/varied connections
• Interoperability standards for devices
• Connect to processor-memory bus through a bridge

Typical I/O Device API
• a set of read-only or read/write registers

Command registers
• writing causes device to do something

Status registers
• reading indicates what device is doing, error codes, …

Data registers
• Write: transfer data to a device
• Read: transfer data from a device

Every device uses this API

1. Programmed I/O:
special instructions talk over special busses
Specify: device, data, direction
• inb $a, 0x64 (keyboard status register)
• outb $a, 0x60 (keyboard data register)
• Protection: only allowed in kernel mode (expensive)

2. Memory-Mapped I/O:
map registers into virtual address space
• Accesses to certain addresses redirected to I/O devices
• Data goes over the memory bus (faster!)
• Protection: via bits in pagetable entries
• OS+MMU+devices configure mappings

Memory-Mapped I/O

Physical
Address

SpaceVirtual
Address

Space

0xFFFF FFFF

0x00FF FFFF

0x0000 0000 0x0000 0000

Display

Disk

Keyboard

Network

I/O
Controller

I/O
Controller

I/O
Controller

I/O
Controller

vs. less-favored alternative = Programmed I/O:
• Syscall instructions that communicate with I/O
• Communicate via special device registers

agreed-upon

locations for

communication

Programmed I/O
char read_kbd()

{

do {

sleep();

status = inb(0x64);

} while(!(status & 1));

return inb(0x60);

}

Memory Mapped I/O
struct kbd {

char status, pad[3];

char data, pad[3];

};

kbd *k = mmap(...);

char read_kbd()

{

do {

sleep();

status = k->status;

} while(!(status & 1));

return k->data;

}

syscalls

syscall

Clicker Question: Which is better?
(A) Programmed I/O
(B) Memory Mapped I/O
(C) Both have syscalls, both are bad

How to talk to device?
• Programmed I/O or Memory-Mapped I/O

How to get events?
• Polling or Interrupts

How to transfer lots of data?
disk->cmd = READ_4K_SECTOR;
disk->data = 12;
while (!(disk->status & 1) { }
for (i = 0..4k)

buf[i] = disk->data;

Very,
Very,
Expensive

1. Programmed: Device ßà CPU ßà RAM Transfer
for (i = 1 .. n)
• CPU issues read request
• Device puts data on bus

& CPU reads into registers
• CPU writes data to memory

2. Direct Memory Access (DMA): Device ßà RAM
• CPU sets up DMA request
• for (i = 1 ... n)

Device puts data on bus
& RAM accepts it

• Device interrupts CPU after done

CPU RAM

DISK

CPU RAM

DISK

Programmed I/O
• Requires special instructions
• Can require dedicated hardware interface to devices
• Protection enforced via kernel mode access to instructions
• Virtualization can be difficult

Memory-Mapped I/O
• Re-uses standard load/store instructions
• Re-uses standard memory hardware interface
• Protection enforced with normal memory protection scheme
• Virtualization enabled with normal memory virtualization

scheme

How does program learn device is ready/done?
1. Polling: Periodically check I/O status register

• Common in small, cheap, or real-time embedded systems
� Predictable timing, inexpensive
� Wastes CPU cycles

2. Interrupts: Device sends interrupt to CPU
• Cause register identifies the interrupting device
• Interrupt handler examines device, decides what to do
� Only interrupt when device ready/done
� Forced to save CPU context (PC, SP, registers, etc.)
� Unpredictable, event arrival depends on other devices’ activity

Clicker Question: Which is better?
(A) Polling (B) Interrupts (C) Both equally good/bad

