
1

Dynamic Memory Allocation

CS 3410
Computer System Organization & Programming

Note: these slides derive from those by Markus Püschel at CMU.

2

A. Chocolate Chip
B. Chocolate Chocolate Chip
C. Oatmeal Raisin
D. Snickerdoodle
E. Other

My favorite kind of cookie is

2

3

while (TRUE) {
code a little;
test a little;

}

Get something that works!

“Premature Optimization is the Root of all Evil”
—Donald Knuth

Recommended Approach

3

4

• Basic concepts
• Basic Implementation
• Implicit Free Lists
• Explicit Free Lists
• Implementation Optimizations

Note: there are manyways to implement malloc;
these slides show the version that most 3410
students have found most intuitive in the past.

Today

4

5

An allocator:
• maintains the heap as collection of

variable sized blocks, which are either
allocated or free
• Some languages free the memory for you

(Java, ML, Lisp)
• Some do not: C

Dynamic Memory Allocation

5

6

Visualizing Malloc

6

p1 = malloc(16)

p2 = malloc(20)
p3 = malloc(24)

free(p2)

To simplify the drawing, each box is 4 bytes

Note: the user should never make any expectations about where the block will be
allocated with respect to other blocks. That is not part of the library interface.

heap

p1 p2 p3 p4

7

Visualizing Malloc

7

p1 = malloc(16)

p2 = malloc(20)
p3 = malloc(24)

free(p2)
p4 = malloc(8)

To simplify the drawing, each box is 4 bytes

Note: the user should never make any expectations about where the block will be
allocated with respect to other blocks. That is not part of the library interface.

heap

p1 p2 p3 p4

Notice p2 still points to its original
location after free is called

Fragmentation!
p5 = malloc(16)

8

Applications (users of malloc)
• Can issue arbitrary sequence of malloc and free requests
• free request must be to a malloc’d block

Allocators (implementors of malloc)
• Can’t control number or size of allocated blocks
• Must respond immediately to malloc requests
- i.e., can’t reorder or buffer requests

• Must allocate blocks from free memory
- i.e., can only place allocated blocks in free memory

• Must align blocks so they satisfy all alignment requirements
- 8 byte alignment for GNU malloc (libc malloc) on Linux boxes

• Can manipulate and modify only free memory
• Can’t move the allocated blocks once they are malloc’d
- i.e., compaction is not allowed

Constraints

8

9

1. How do we keep track of the size of a block?

2. How do we keep track of which blocks are in use
and which ones are free?

3. When the request for a block is smaller than the free
block we find, what do we do with the extra space?

4. How do we pick a block to use for allocation?
(if a few work)

5. How do we reinsert freed block?

Implementation Issues: 5 Questions

9

10

Store block length before the block (called the header)
• +1 word for every allocated block

Heap: initially 1 large, free block
• 1st request splits 1 block into 2 blocks (1 used, 1 free)
- User gets a pointer to the block
- User does not know about the header
- Notice size is size of block + header

Q1: How big is each block?

10

p0 = malloc(16)

block size block
Free word

Allocated word

64

44 520

p0

heap

rest of heap

11

Simple solution:
• Keep allocation status in header (0=free, 1=allocated)
• Requires another extra word for every block
• User still does not know about the header

Q2: Is this block taken?

11

p0 = malloc(16)

0

40 0

block size block

5

64

24

p0

heap

free(p0)

1

40 0 524 0Free word

Allocated word

12

What about 8-byte alignment?

12

heap

80 0

Free blocks: white
Headers: size in bytes, allocated bit

Each box is 4 bytes.

p0 = malloc(12);

If block pointer must be 8-byte aligned, and the header is
8 bytes, then the header should also be 8-byte aligned.

x200 x208 x20c x210 x218 x21c x228 x22c x238 x23c

13

What about 8-byte alignment?

13

heap

24 1

Free blocks: white
Headers: size in bytes, allocated bit
Padding for alignment: shaded grey
Block (what the user knows about)Each box is 4 bytes.

p0 = malloc(12);

If block pointer must be 8-byte aligned, and the header is
8 bytes, then the header should also be 8-byte aligned.

x200 x208 x20c x210 x218 x21c x228 x22c x238 x23c

056

p0

p1 = malloc(24);

pad
din
g

14

What about 8-byte alignment?

14

heap

24 1

Unu
sed

(pa
ddi
ng)

Free blocks: white
Headers: size in bytes, allocated bit
Padding for alignment: shaded grey
Block (what the user knows about)Each box is 4 bytes.

p0 = malloc(12);

If block pointer must be 8-byte aligned, and the header is
8 bytes, then the header should also be 8-byte aligned.

x200 x208 x20c x210 x218 x21c x228 x22c x238 x23c

132

p0

p1 = malloc(24);
p3 = malloc(8);

p1

024

pad
din
g

15

What about 8-byte alignment?

15

heap

24 1

Unu
sed

(pa
ddi
ng)

Free blocks: white
Headers: size in bytes, allocated bit
Padding for alignment: shaded grey
Block (what the user knows about)Each box is 4 bytes.

p0 = malloc(12);

If block pointer must be 8-byte aligned, and the header is
8 bytes, then the header should also be 8-byte aligned.

x200 x208 x20c x210 x218 x21c x228 x22c x238 x23c

132

p0

p1 = malloc(24);
p3 = malloc(8);

p1

free(p1);

p3

8 0116

pad
din
g

16

What about 8-byte alignment?

16

heap

24 1

Free blocks: white
Headers: size in bytes, allocated bit
Padding for alignment: shaded grey
Block (what the user knows about)Each box is 4 bytes.

p0 = malloc(12);

If block pointer must be 8-byte aligned, and the header is
8 bytes, then the header should also be 8-byte aligned.

x200 x208 x20c x210 x218 x21c x228 x22c x238 x23c

032

p0

p1 = malloc(24);
p3 = malloc(8);

p1

free(p1);

p3

116 8 0

pad
din
g

17

What about 8-byte alignment?

17

heap

24 1

Free blocks: white
Headers: size in bytes, allocated bit
Padding for alignment: shaded grey
Block (what the user knows about)Each box is 4 bytes.

p0 = malloc(12);

If block pointer must be 8-byte aligned, and the header is
8 bytes, then the header should also be 8-byte aligned.

x200 x208 x20c x210 x218 x21c x228 x22c x238 x23c

032

p0

p1 = malloc(24);
p3 = malloc(8);

p1

free(p1);

p3

There are no actual pointers. You traverse
through the heap by starting at the heap
ptr and adding size to current block.

116 8 0

18

Also, the heap might not be aligned

18

heap

24 1

Free blocks: white
Headers: size in bytes, allocated bit
Padding for alignment: shaded grey
Block (what the user knows about)Each box is 4 bytes.

Might need to align the heap before you do anything.
(Also need to keep track of where the heap ends so you
don’t run off it.)

x200 x208 x20c x210 x218 x21c x228 x22c x238 x23c

032 116 8 0

Unu
sed

(pa
ddi
ng)

19

Suppose we need to allocate 12 bytes
Q3: Allocating a New Block

19

16 0 24 1 40 0

This is our free block of choice

16 1

heap Free but not
big enough! Not free! Free and

big enough!

20

Suppose we need to allocate 12 bytes

Two options:
1. Allocate the whole block:

2. Split the free block

Q3: Allocating a New Block

20

16 0 24 1 40 0

This is our free block of choice

16 1 …

heap

16 0 24 1 40 1 16 1 …

internal
fragmentation!

16 0 24 1 24 1 16 0 16 1 …

taken free

taken

21

First fit
• Search from beginning, choose first free block that fits:
• Linear time in total number of blocks (allocated and free)
• Can cause “splinters” (of small free blocks) at beginning of list

Next fit
• Like first fit, but search list starting where previous search finished
• Often faster than first fit: avoids re-scanning unhelpful blocks
• Some research suggests that fragmentation is worse

Best fit
• Search list, choose the best free block: fits, with fewest bytes left over
• Keeps fragments small—usually helps fragmentation
• Typically runs slower than first fit

Q4: Finding a Free Block

21

22

Simplest implementation: clear the “allocated” flag
But can lead to “false fragmentation”

Q5: Freeing a Block

22

free(p)
p

malloc(32))
Oops!

There is enough free space, but the allocator won’t be able to find it

16 0 24 1 24 1 16 0 16 1

heap

16 0 24 1 24 0 16 0 16 1

heap

23

• Basic concepts
• Basic Implementation
• Implicit Free Lists: because pointers are

calculated via the size field rather than
with actual pointers.

• Explicit Free Lists
• Implementation Optimizations

Note: it is your choice whether you do
an explicit or implicit list for this
project!

Today

23

24

We don’t need to track all the blocks.
We only need to track the free ones.

Dynamic Memory Allocation Library only
frees allocated blocks when user says so:
• User provides the pointer to be freed
• Cannot ever move or use the allocated

blocks in the meantime

This will blow your mind

24

25

Implicit free list links all blocks using length

Explicit free list links free blocks using ptrs

Two Types of Lists

25

24 0 16 1 0 16 136

24 0 16 1 0 16 136

• “next” free block could be anywhere
• next pointer goes away when block is allocated
• (in C: two ways of casting the same block)

Size

Block and
possibly
padding

Status Bit

Size

Block & poss.
padding

Status Bit

Next
Prev

26

Allocating From Explicit Free Lists

Before

After

= malloc(…)

(with splitting)

conceptual graphic

Notice the allocated block is
not in the list.

It doesn’t have to be!

27

Comparison to implicit list:
• Allocate: linear in # of free blocks (instead of all blocks)
- Much faster when most of the memory is full
• More complicated allocate/free (needs to splice blocks

in/out of list)
• extra space for the links (2 extra words needed for each

free block)

Most common use of linked lists is in conjunction with
segregated free lists
• Keep multiple linked lists of different size classes, or

possibly for different types of objects

Explicit List Summary

28

Utilization:
• make best use of the heap as possible

Performance:
• respond as quickly as possible

Beyond Correctness

28

29

Method 3: Segregated free list
• different free lists for different size classes

Method 4: Blocks sorted by size
• Can use a balanced tree (e.g. Red-Black

tree) with pointers within each free block,
and the length used as a key

Beyond Implicit and Explicit

29

30

Segregated List (Seglist) Allocators
¢ Each size class of blocks has its own free list

¢ Often have separate classes for each small size
¢ For larger sizes: One class for each two-power size

1-2

3

4

5-8

9-inf

31

Seglist Allocator
¢ Given an array of free lists, each one for some size class

¢ To allocate a block of size n:
§ Search appropriate free list for block of size m > n
§ If found: split block, optionally place fragment on appropriate list
§ If no block is found, try next larger class
§ Repeat until block is found

¢ If no block found:
§ Real World:

§ Request additional heap memory from OS (using sbrk())
§ Allocate block of n bytes from new memory
§ Place remainder as a single free block in largest size class

§ CS 3410:
§ Return NULL

32

Seglist Allocator (cont.)
¢ To free a block:

§ Coalesce and place on appropriate list (optional)

¢ Advantages of seglist allocators
§ Higher throughput

§ log time for power-of-two size classes
§ Better memory utilization

§ First-fit search of segregated free list approximates a best-fit
search of entire heap

§ Extreme case: giving each block its own size class is equivalent to
best-fit

33

• Basic concepts
• Basic Implementation
• Implementation Optimizations
• Coalescing
• Header Optimization

Do not try these optimizations until you
have the basic implementation working.

Today

33

34

Joining blocks, if they are free

Easy to find the blocks after the block being freed.

Harder to find the blocks before the block being freed.

Coalescing

34

free(p)
16 0 24 1 24 1 16 0 16 1

heap

p

16 0 24 1 24 0 16 0 16 1

heap

Don’t need to clear these fields;
they will just be ignored.

40

35

Coalescing Cases

35

Allocated

Allocated

Allocated

Free

Free

Allocated

Free

Free

Block being
freed

Case 1 Case 2 Case 3 Case 4

36

m1

Allocated

Coalescing: Case 1

n

free me!
m2

Allocated

m1

Allocated

n

Free
m2

Allocated

36

37

m1

Allocated

Coalescing: Case 2

n

free me!
m2

m1

Allocated

n+m2

Free

37

Free

38

m1

Coalescing: Case 3

n

free me!
m2

Allocated

n+m1

m2

Allocated

38

Free
Free

39

m1

Coalescing: Case 4

n

free me!
m2

n+m1+m2

39

Free
Free

Free

40

Wait a Minute…

40

• How to we coalesce with the block in front?
• How do we know what block is in front of

another block?

41

Boundary tags [Knuth73]

• Replicate size/allocated word at end of free blocks
• Allows us to traverse the “list” backwards, but requires extra space
• Important and general technique!

Implicit List: Bidirectional Coalescing

41

Size

Block and
padding

SizeBoundary tag
(footer)

Header
Status Bit

Status Bit

24 0 32 1 32 0 16 124 0 32 1 32 0 16 1

Now if you want to free
this block, you know
how to check both
neighbors’ status bits

42

Freeing With Explicit Free Lists
¢ Insertion policy: Where do you put a newly freed block?

§ LIFO (last-in-first-out) policy
§ Insert freed block at the beginning of the free list
§ Pro: simple and constant time
§ Con: studies suggest fragmentation worse than addr-ordered

§ Address-ordered policy
§ Insert freed blocks so free list blocks always in address order:

addr(prev) < addr(curr) < addr(next)
§ Con: requires search
§ Pro: studies suggest fragmentation is lower than LIFO

43

Freeing With a LIFO Policy (Case 1)

¢ Insert the freed block at the root of the list

/

free()

/

Free
List

Root

Free
List

Root

Before

After

conceptual graphic

Allocated

Allocated

Case 1

44

Freeing With a LIFO Policy (Case 2)

¢ Splice out predecessor block, coalesce both memory blocks,
and insert the new block at the root of the list

/

free()

/

Free
List

Root

Free
List

Root

Before

After

conceptual graphic

Allocated

Free

Case 2

45

Freeing With a LIFO Policy (Case 3)

¢ Splice out successor block, coalesce both memory blocks and
insert the new block at the root of the list

/

free()

/

Free
List

Root

Free
List

Root

Before

After

conceptual graphic
Free

Allocated

Case 3

46

Freeing With a LIFO Policy (Case 4)

¢ Splice out predecessor and successor blocks, coalesce all 3
memory blocks and insert the new block at the root of the list

/

free()

/

Free
List

Root

Free
List

Root

Before

After

conceptual graphic

Free

Free

Case 4

47

• Basic concepts
• Basic Implementation
• Implementation Optimizations
• Coalescing
• Header Optimization

Today

47

48

• Standard trick to keep overhead low:
• If blocks are aligned, size is never odd, LSB always 0
• Instead of storing 0, use LSB as allocated/free flag
• Merge the size & status fields into 1 word
• When reading size word, must mask out this bit

Header Optimization!

48

Size 0 0 a

1 word

Format of
allocated and
free blocks

Block

a = 1: Allocated block
a = 0: Free block

Size: block size

block: application data
(allocated blocks only)

Optional
padding

31 3 2 1 0

49

Placement policy:
• First-fit, next-fit, best-fit, etc.
• Tradeoffs: throughput vs. fragmentation

Splitting policy:
• When do we go ahead and split free blocks?
• How much internal fragmentation are we

willing to tolerate?

Summary of Key Allocator Policies

49

50

Bryant & O’Hallaron, “Computer Systems: A
Programmer's Perspective” Sections 9.9-9.13
• A great book about System Software

D. Knuth, “The Art of Computer Programming”, 2nd

edition, Addison Wesley, 1973
• The classic reference on dynamic storage allocation

Wilson et al, “Dynamic Storage Allocation: A Survey and
Critical Review”, Proc. 1995 Int’l Workshop on Memory
Management, Kinross, Scotland, Sept, 1995.
• Comprehensive survey
• Available from CS:APP student site (csapp.cs.cmu.edu)

More Info on Allocators

50

