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Which of the following is trouble-free code?
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int *bubble()
{ int a; 

…
return &a; 

}

char *rubble() 
{ char s[20];

gets(s); 
return s;

}

A
int *toil() 
{ int *s; 

s = (int *)malloc(20); 
… 
return s; 

}

int *trouble() 
{ int *s;

s = (int *)malloc(20); 
… 
free(s); 
… 
return s; 

}

B

C
D



Don’t ever write code like this!

void some_function() {
int *x = malloc(1000);
int *y = malloc(2000);
free(y);
int *z = malloc(3000);
y[20] = 7;

}

void f1() {
int *x = f2();
int  y = *x + 2;

}
int *f2() {

int a = 3;
return &a;

}

Dangling pointers 
into freed heap mem

Dangling pointers 
into old stack frames
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seconds      instructions         cycles seconds
program        program         instruction cycle

2 Classic Goals of Architects:
Clock period  ( Clock frequency)
Cycles per Instruction ( IPC)

= x x
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Darling of performance improvement for decades

Why is this no longer the strategy?
Hitting Limits:
• Pipeline depth
• Clock frequency 
• Moore’s Law & Technology Scaling
• Power
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You’ve seen:
Exploiting Intra-instruction parallelism:

Pipelining (decode A while fetching B)
You haven’t seen:
Exploiting Instruction Level Parallelism (ILP):

Multiple issue pipeline (2-wide, 4-wide, etc.)
• Statically detected by compiler (VLIW)
• Dynamically detected by HW  
Dynamically Scheduled (OoO)
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a.k.a. Very Long Instruction Word (VLIW)
Compiler groups instructions to be issued together
• Packages them into “issue slots”

How does HW detect and resolve hazards?
It doesn’t. J Compiler must avoid hazards

Example: Static Dual-Issue 32-bit MIPS
• Instructions come in pairs (64-bit aligned)

– One ALU/branch instruction (or nop)

– One load/store instruction (or nop)
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Two-issue packets
• One ALU/branch instruction
• One load/store instruction
• 64-bit aligned

– ALU/branch, then load/store
– Pad an unused instruction with nop

Address Instruction type Pipeline Stages
n ALU/branch IF ID EX MEM WB
n + 4 Load/store IF ID EX MEM WB
n + 8 ALU/branch IF ID EX MEM WB
n + 12 Load/store IF ID EX MEM WB
n + 16 ALU/branch IF ID EX MEM WB
n + 20 Load/store IF ID EX MEM WB
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Loop: lw $t0, 0($s1)      # $t0=array element
addu $t0, $t0, $s2    # add scalar in $s2
sw $t0, 0($s1)      # store result
addi $s1, $s1,–4      # decrement pointer
bne $s1, $zero, Loop # branch $s1!=0

Schedule this for dual-issue MIPS
Loop: lw $t0, 0($s1)      # $t0=array element

addu $t0, $t0, $s2    # add scalar in $s2
sw $t0, 0($s1)      # store result
addi $s1, $s1,–4      # decrement pointer
bne $s1, $zero, Loop # branch $s1!=0

ALU/branch Load/store cycle
Loop: nop lw $t0, 0($s1) 1

addi $s1, $s1,–4 nop 2

addu $t0, $t0, $s2 nop 3

bne $s1, $zero, Loop sw $t0, 4($s1) 4

Clicker Question: What is the IPC of this machine? 
(A) 0.8    (B) 1.0   (C)   1.25    (D) 1.5    (E) 2.0

(hint: think completion rates)
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Goal: larger instruction windows (to play with)
• Predication
• Loop unrolling
• Function in-lining
• Basic block modifications (superblocks, etc.)

Roadblocks
• Memory dependences (aliasing)
• Control dependences
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Exploiting Intra-instruction parallelism:
Pipelining (decode A while fetching B)

Exploiting Instruction Level Parallelism (ILP):
Multiple issue pipeline (2-wide, 4-wide, etc.)
• Statically detected by compiler (VLIW)
• Dynamically detected by HW
Dynamically Scheduled (OoO)
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aka SuperScalar Processor (c.f. Intel)
• CPU chooses multiple instructions to issue each cycle
• Compiler can help, by reordering instructions….
• … but CPU resolves hazards
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Exploiting Intra-instruction parallelism:
Pipelining (decode A while fetching B)

Exploiting Instruction Level Parallelism (ILP):
Multiple issue pipeline (2-wide, 4-wide, etc.)
• Statically detected by compiler (VLIW)
• Dynamically detected by HW
Dynamically Scheduled (OoO)

13



Even better: Speculation/Out-of-order Execution
• Execute instructions as early as possible
• Aggressive register renaming (indirection to the 

rescue!)
• Guess results of branches, loads, etc.
• Roll back if guesses were wrong
• Don’t commit results until all previous insns

committed
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It was awesome, but then it stopped improving
Limiting factors?
• Programs dependencies
• Memory dependence detection à be conservative

– e.g. Pointer Aliasing: A[0] += 1; B[0] *= 2;

• Hard to expose parallelism
– Still limited by the fetch stream of the static program

• Structural limits
– Memory delays and limited bandwidth

• Hard to keep pipelines full, especially with branches
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Exploiting Thread-Level parallelism
Hardware multithreading to improve utilization:
• Multiplexing multiple threads on single CPU
• Sacrifices latency for throughput
• Single thread cannot fully utilize CPU?  Try more!
• Three types: 
• Course-grain (has preferred thread)
• Fine-grain (round robin between threads)
• Simultaneous (hyperthreading)
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Process: multiple threads, code, data and OS state
Threads: concurrent computations that share the 
same address space
• Share: code, data, files
• Do not share: regs or stack
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Time evolution of issue slots
• Color = thread, white = no instruction

CGMT FGMT SMT4-wide
Superscalar

tim
e

Switch to 
thread B on 
thread A L2 

miss

Switch 
threads 

every cycle

Insns from 
multiple 
threads 
coexist 19



CPU Year Clock 
Rate

Pipeline 
Stages

Issue 
width

Out-of-order/ 
Speculation

Cores Power

i486 1989 25MHz 5 1 No 1 5W
Pentium 1993 66MHz 5 2 No 1 10W
Pentium Pro 1997 200MHz 10 3 Yes 1 29W
P4 Willamette 2001 2000MHz 22 3 Yes 1 75W
UltraSparc III 2003 1950MHz 14 4 No 1 90W
P4 Prescott 2004 3600MHz 31 3 Yes 1 103W

Those simpler cores did something very right.
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486

286

8088
8080

80084004

386
Pentium

AtomP4
Itanium 2 K8

K10
Dual-core Itanium 2
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Moore’s Law in Action



Hot Plate

Rocket Nozzle

Nuclear Reactor

Surface of Sun

Xeon

180nm 32nm
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Power = capacitance * voltage2 * frequency 
In practice: Power ~ voltage3

Reducing voltage helps (a lot)
... so does reducing clock speed
Better cooling helps

The power wall
• We can’t reduce voltage further
• We can’t remove more heat

Lower Frequency
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Dual-Core
Underclocked -20%

Power
1.0x
1.0x

Performance
Single-Core

Power
1.2x

1.7x

Performance Single-Core
Overclocked +20%

Power
0.8x

0.51x

Performance Single-Core
Underclocked -20%

Power
Performance 1.6x

1.02x
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CPU Year Clock 
Rate

Pipeline 
Stages

Issue 
width

Out-of-order/ 
Speculation

Cores Power

i486 1989 25MHz 5 1 No 1 5W
Pentium 1993 66MHz 5 2 No 1 10W
Pentium Pro 1997 200MHz 10 3 Yes 1 29W
P4 Willamette 2001 2000MHz 22 3 Yes 1 75W
UltraSparc III 2003 1950MHz 14 4 No 1 90W
P4 Prescott 2004 3600MHz 31 3 Yes 1 103W

Those simpler cores did something very right.

Core 2006 2930MHz 14 4 Yes 2 75W
Core i5 Nehal 2010 3300MHz 14 4 Yes 1 87W
Core i5 Ivy Br 2012 3400MHz 14 4 Yes 8 77W
UltraSparc T1 2005 1200MHz 6 1 No 8 70W
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Q: So lets just all use multicore from now on!
A: Software must be written as parallel program

Multicore difficulties
• Partitioning work
• Coordination & synchronization
• Communications overhead
• How do you write parallel programs?

... without knowing exact underlying architecture?
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Partition work so all cores have something to do
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Need to partition so all cores are actually working
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If tasks have a serial part and a parallel part…
Example: 

step 1: divide input data into n pieces
step 2: do work on each piece
step 3: combine all results

Recall: Amdahl’s Law
As number of cores increases …
• time to execute parallel part? 
• time to execute serial part?
• Serial part eventually dominates

goes to zero
Remains the same
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Necessity, not luxury
Power wall

Not easy to get performance out of

Many solutions
Pipelining
Multi-issue
Multithreading
Multicore
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Q: So lets just all use multicore from now on!
A: Software must be written as parallel program

Multicore difficulties
• Partitioning work
• Coordination & synchronization
• Communications overhead
• How do you write parallel programs?

... without knowing exact underlying architecture?
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Cache Coherency
• Processors cache shared data à they see different 

(incoherent) values for the same memory location

Synchronizing parallel programs
• Atomic Instructions
• HW support for synchronization

How to write parallel programs
• Threads and processes
• Critical sections, race conditions, and mutexes
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Shared Memory Multiprocessor (SMP)
• Typical (today): 2 – 4 processor dies, 2 – 8 cores each 
• Hardware provides single physical address space for 

all processors

...Core0
Cache

Memory I/O

Interconnect

Core1
Cache

CoreN
Cache

... ...
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...Core0
Cache

Memory I/O

Interconnect

Core1
Cache

CoreN
Cache

... ...

Thread A (on Core0) Thread B (on Core1)
for(int i = 0, i < 5; i++) { for(int j = 0; j < 5; j++) {

x = x + 1; x = x + 1;
} }
What will the value of x be after both loops finish?
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Thread A (on Core0) Thread B (on Core1)
for(int i = 0, i < 5; i++) { for(int j = 0; j < 5; j++) {

x = x + 1; x = x + 1;
} }
What will the value of x be after both loops finish?
(x starts as 0)

a) 6
b) 8
c) 10
d) Could be any of the above
e) Couldn’t be any of the above 36



...Core0
Cache

Memory I/O

Interconnect

Core1
Cache

CoreN
Cache

... ...

Thread A (on Core0) Thread B (on Core1)
for(int i = 0, i < 5; i++) { for(int j = 0; j < 5; j++) {

LW $t0, addr(x) LW $t0, addr(x)
ADDIU $t0, $t0, 1 ADDIU $t0, $t0, 1
SW $t0, addr(x) SW $t0, addr(x)

} }

$t0=0

$t0=1

x=1

$t0=0

$t0=1

x=1

Problem!

X 0 

X 0 X 0 1 1 
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Time 
step

Event CPU A’s 
cache

CPU B’s 
cache

Memory

0 0

Executing on a write-thru cache:
Time 
step

Event CPU A’s 
cache

CPU B’s 
cache

Memory

0 0

1 CPU A reads X 0 0

Time 
step

Event CPU A’s 
cache

CPU B’s 
cache

Memory

0 0

1 CPU A reads X 0 0

2 CPU B reads X 0 0 0

Time 
step

Event CPU A’s 
cache

CPU B’s 
cache

Memory

0 0

1 CPU A reads X 0 0

2 CPU B reads X 0 0 0

3 CPU A writes 1 to X 1 0 1

...Core0
Cache

Memory I/O

Interconnect

Core1
Cache

CoreN
Cache

... ...
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Coherence
• What values can be returned by a read
• Need a globally uniform (consistent) view of a single 

memory location 
Solution: Cache Coherence Protocols

Consistency
• When a written value will be returned by a read
• Need a globally uniform (consistent) view of all 

memory locations relative to each other
Solution: Memory Consistency Models
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Coherence
• all copies have same data at all times

Coherence controller:
• Examines bus traffic (addresses and data)
• Executes coherence protocol

– What to do with local copy when you see 
different things happening on bus

Three processor-initiated events
• Ld: load     
• St: store    
• WB: write-back

Two remote-initiated events
• LdMiss: read miss from another processor
• StMiss: write miss from another processor
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VI (valid-invalid) protocol:
• Two states (per block in cache)

– V (valid): have block
– I (invalid): don’t have block
+ Can implement with valid bit

Protocol diagram (left)
• If you load/store a block: transition to V
• If anyone else wants to read/write block:

– Give it up: transition to I state
– Write-back if your own copy is dirty
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lw by Thread B generates an “other load miss” event (LdMiss)
• Thread A responds by sending its dirty copy, transitioning to I
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0
V:0 0

V:1 0

I: 1V:1

1V:2

CPU0 MemCPU1Thread A
lw t0, 0(r3),
ADDIU $t0,$t0,1
sw t0,0(r3)

Thread B

lw t0, 0(r3)
ADDIU $t0,$t0,1
sw t0,0(r3)



Clicker Question:
Core A loads x into a register
Core B wants to load x into a register
What happens?
(A) they can both have a copy of X in their 

cache
(B) A keeps the copy
(C) B steals the copy from A, and this is an 

efficient thing to do
(D) B steals the copy from A, and this is a 

sad shame
(E) B waits until A kicks X out of its cache, 

then it can complete the load
43
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LdMiss

VI protocol is inefficient
– Only one cached copy allowed in entire system
– Multiple copies can’t exist even if read-only

– Not a problem in example
– Big problem in reality

MSI (modified-shared-invalid)
• Fixes problem: splits “V” state into two states

– M (modified): local dirty copy
– S (shared): local clean copy

• Allows either
– Multiple read-only copies (S-state)  --OR--
– Single read/write copy (M-state)
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lw by Thread B generates a “other load miss” event (LdMiss)
• Thread A responds by sending its dirty copy, transitioning to S

sw by Thread B generates a “other store miss” event (StMiss)
• Thread A responds by transitioning to I
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Thread A
lw t0, 0(r3),
ADDIU $t0,$t0,1
sw t0,0(r3)

Thread B

lw t0, 0(r3),
ADDIU $t0,$t0,1
sw t0,0(r3)

0
S:0 0

M:1 0

S:1 1S:1

I:     1M:2

CPU0 MemCPU1



Coherence introduces two new kinds of cache misses
• Upgrade miss

– On stores to read-only blocks
– Delay to acquire write permission to read-only block

• Coherence miss
– Miss to a block evicted by another processor’s requests

Making the cache larger…
• Doesn’t reduce these type of misses
• As cache grows large, these sorts of misses dominate

False sharing
• Two or more processors sharing parts of the same block
• But not the same bytes within that block (no actual sharing)
• Creates pathological “ping-pong” behavior
• Careful data placement may help, but is difficult
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In reality: many coherence protocols
• Snooping: VI, MSI, MESI, MOESI, …

– But Snooping doesn’t scale
• Directory-based protocols

– Caches & memory record blocks’ sharing status in directory
– Nothing is free à directory protocols are slower!

Cache Coherency:
• requires that reads return most recently written value
• Is a hard problem!

47



A single core machine that supports multiple 
threads can experience a coherence miss. 

A. True
B. False
C. Cannot be answered with the information 
given
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What just happened???
Is MSI Cache Coherency Protocol Broken??
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Thread A
lw t0, 0(r3)

ADDIU $t0,$t0,1
sw t0,0(x)

Thread B

lw t0, 0(r3)
ADDIU $t0,$t0,1
sw t0,0(x)

0
S:0 0
S:0 0S:0

M:1 1I:

CPU0 MemCPU1

I: 0M:1



The Previous example shows us that

a) Caches can be incoherent even if there is a 
coherence protocol.

b) The MSI protocol is not rich enough to support 
coherence for multi-threaded programs

c) Coherent caches are not enough to guarantee 
expected program behavior.

d) Multithreading is just a really bad idea.
e) All of the above
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Within a thread: execution is sequential
Between threads?

• No ordering or timing guarantees
• Might even run on different cores at the same time

Problem: hard to program, hard to reason about
• Behavior can depend on subtle timing differences
• Bugs may be impossible to reproduce

Cache coherency is necessary but not sufficient…
Need explicit synchronization to make guarantees about 
concurrent threads!
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Timing-dependent error involving access to shared state 
Race conditions depend on how threads are scheduled

• i.e. who wins “races” to update state

Challenges of Race Conditions
• Races are intermittent, may occur rarely
• Timing dependent = small changes can hide bug

Program is correct only if all possible schedules are safe  
• Number of possible schedules is huge
• Imagine adversary who switches contexts at worst possible time
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Atomic read & write memory operation
• Between read & write: no writes to that address

Many atomic hardware primitives
• test and set (x86)
• atomic increment (x86)
• bus lock prefix (x86)
• compare and exchange (x86, ARM deprecated)
• linked load / store conditional (pair of insns)

(MIPS, ARM, PowerPC, DEC Alpha, …)
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Load linked: LL rt, offset(rs)
“I want the value at address X. Also, start monitoring any 
writes to this address.”

Store conditional: SC rt, offset(rs)
“If no one has changed the value at address X since the LL, 
perform this store and tell me it worked.”

• Data at location has not changed since the LL?
– SUCCESS: 

§ Performs the store 
§ Returns 1 in rt

• Data at location has changed since the LL?
– FAILURE: 

§ Does not perform the store
§ Returns 0 in rt 54



Load linked: LL rt, offset(rs)

Store conditional: SC rt, offset(rs)

i++
↓

LW $t0, 0($s0)
ADDIU $t0, $t0, 1
SW $t0, 0($s0)

LL $t0, 0($s0)
ADDIU $t0, $t0, 1
SC $t0, 0($s0)
BEQZ $t0, try

try:

atomic(i++)
↓

Value in memory changed between LL and SC ?
à SC returns 0 in $t0 à retry
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Time Thread A Thread B Thread 
A $t0

Thread 
B $t0

Mem
[$s0]

0 0
1 try: LL $t0, 0($s0) 0 0
2 try: LL $t0, 0($s0) 0 0
3 ADDIU $t0, $t0, 1 1 0 0
4 ADDIU $t0, $t0, 1 1 1 0
5 SC $t0, 0($s0) 1 1 1
6 BEQZ $t0, try 1 1 1
7 SC $t0, 0 ($s0) 1 0 1
8 BEQZ $t0, try 1 0 1

Load linked: LL $t0, offset($s0)

Store conditional: SC $t0, offset($s0)

Success! Failure!56



Create atomic version of every instruction? NO
Does not scale or solve the problem

To eliminate races: identify Critical Sections
• only one thread can be in
• Contending threads must wait to enter

CSEnter();
Critical 
section

CSExit();

T1 T2

time
CSEnter();

# wait
# wait
Critical 
section

CSExit();
T1

T2 57



Implementation of CSEnter and CSExit
• Only one thread can hold the lock at a time

“I have the lock”
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m = 0; 
mutex_lock(int *m) {

test_and_set: LI $t0, 1
LL $t1, 0($a0)
BNEZ $t1, test_and_set
SC $t0, 0($a0)
BEQZ $t0, test_and_set

}

mutex_unlock(int *m) {
SW $zero, 0($a0)

}

This is called a 
Spin lock
aka spin waiting
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mutex_lock(int *m)
Time Thread A Thread B ThreadA ThreadB Mem

$t0 $t1 $t0 $t1 M[$a0]

0 0
1 try: LI $t0, 1 try: LI $t0, 1 1 1 0
2 LL $t1, 0($a0) LL $t1, 0($a0) 1 0 1 0 0
3 BNEZ $t1, try BNEZ $t1, try 1 0 1 0 0
4 SC $t0, 0 ($a0) 1 0 1
5 SC $t0, 0($a0) 0 0 1 0 1
6 BEQZ $t0, try BEQZ $t0, try 0 0 1 0 1
7

Success!Failure!
Critical sectiontry: LI $t0, 1
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Goal: enforce data 
structure invariants

// invariant:
// data in A[h … t-1]
char A[100];
int h = 0, t = 0;

// producer: add to tail if room
void put(char c) {
A[t] = c;
t = (t+1)%n;

}

1 2 3

head tail

// consumer: take from head
char get() {
while (t == h) { }; 
char c = A[h];
h = (h+1)%n;
return c;

}

1 2 3 4

head tail

2 3 4

tailhead
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Goal: enforce data 
structure invariants

// invariant:
// data in A[h … t-1]
char A[100];
int h = 0, t = 0;

// producer: add to tail if room
void put(char c) {
A[t] = c;
t = (t+1)%n;

}
// consumer: take from head
char get() {
while (t == h) { }; 
char c = A[h];
h = (h+1)%n;
return c;

}

Clicker Q:
What’s wrong here?

a) Will lose update to t and/or h
b) Invariant is not upheld
c) Will produce if full
d) Will consume if empty
e) All of the above
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Goal: enforce data 
structure invariants

// invariant:
// data in A[h … t-1]
char A[100];
int h = 0, t = 0;

// producer: add to tail if room
void put(char c) {
A[t] = c;
t = (t+1)%n; ß

}
// consumer: take from head
char get() {
while (t == h) { }; ß
char c = A[h];
h = (h+1)%n; ß
return c;

}

What’s wrong here?
• Could miss an update to     

t or h
• Breaks invariants: only 

produce if not full, only 
consume if not empty

à Need to synchronize access 
to shared data 63



Goal: enforce data 
structure invariants

// invariant:
// data in A[h … t-1]
char A[100];
int h = 0, t = 0;

// producer: add to tail if room
void put(char c) {
A[t] = c;
t = (t+1)%n; 

}

// consumer: take from head
char get() {
while (t == h) { };
char c = A[h];
h = (h+1)%n;
return c;

}

Does this fix 
work?

acquire-lock()

release-lock()

acquire-lock()

release-lock()

Rule of thumb: 
all access & updates 
that can affect the 
invariant become 
critical sections
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Lots of synchronization variations…
Reader/writer locks
• Any number of threads can hold a read lock
• Only one thread can hold the writer lock

Semaphores
• N threads can hold lock at the same time

Monitors
• Concurrency-safe data structure with 1 mutex
• All operations on monitor acquire/release mutex
• One thread in the monitor at a time
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