
CS 3410
Computer Science
Cornell University

1[K. Bala, A. Bracy, M. Martin, S. McKee, A. Roth E. Sirer, and H. Weatherspoon]

Which of the following is trouble-free code?

2

int *bubble()
{ int a;

…
return &a;

}

char *rubble()
{ char s[20];

gets(s);
return s;

}

A
int *toil()
{ int *s;

s = (int *)malloc(20);
…
return s;

}

int *trouble()
{ int *s;

s = (int *)malloc(20);
…
free(s);
…
return s;

}

B

C
D

Don’t ever write code like this!

void some_function() {
int *x = malloc(1000);
int *y = malloc(2000);
free(y);
int *z = malloc(3000);
y[20] = 7;

}

void f1() {
int *x = f2();
int y = *x + 2;

}
int *f2() {

int a = 3;
return &a;

}

Dangling pointers
into freed heap mem

Dangling pointers
into old stack frames

3

seconds instructions cycles seconds
program program instruction cycle

2 Classic Goals of Architects:
Clock period (Clock frequency)
Cycles per Instruction (IPC)

= x x

4

Darling of performance improvement for decades

Why is this no longer the strategy?
Hitting Limits:
• Pipeline depth
• Clock frequency
• Moore’s Law & Technology Scaling
• Power

5

You’ve seen:
Exploiting Intra-instruction parallelism:

Pipelining (decode A while fetching B)
You haven’t seen:
Exploiting Instruction Level Parallelism (ILP):

Multiple issue pipeline (2-wide, 4-wide, etc.)
• Statically detected by compiler (VLIW)
• Dynamically detected by HW
Dynamically Scheduled (OoO)

6

a.k.a. Very Long Instruction Word (VLIW)
Compiler groups instructions to be issued together
• Packages them into “issue slots”

How does HW detect and resolve hazards?
It doesn’t. J Compiler must avoid hazards

Example: Static Dual-Issue 32-bit MIPS
• Instructions come in pairs (64-bit aligned)

– One ALU/branch instruction (or nop)

– One load/store instruction (or nop)

7

Two-issue packets
• One ALU/branch instruction
• One load/store instruction
• 64-bit aligned

– ALU/branch, then load/store
– Pad an unused instruction with nop

Address Instruction type Pipeline Stages
n ALU/branch IF ID EX MEM WB
n + 4 Load/store IF ID EX MEM WB
n + 8 ALU/branch IF ID EX MEM WB
n + 12 Load/store IF ID EX MEM WB
n + 16 ALU/branch IF ID EX MEM WB
n + 20 Load/store IF ID EX MEM WB

8

Loop: lw $t0, 0($s1) # $t0=array element
addu $t0, $t0, $s2 # add scalar in $s2
sw $t0, 0($s1) # store result
addi $s1, $s1,–4 # decrement pointer
bne $s1, $zero, Loop # branch $s1!=0

Schedule this for dual-issue MIPS
Loop: lw $t0, 0($s1) # $t0=array element

addu $t0, $t0, $s2 # add scalar in $s2
sw $t0, 0($s1) # store result
addi $s1, $s1,–4 # decrement pointer
bne $s1, $zero, Loop # branch $s1!=0

ALU/branch Load/store cycle
Loop: nop lw $t0, 0($s1) 1

addi $s1, $s1,–4 nop 2

addu $t0, $t0, $s2 nop 3

bne $s1, $zero, Loop sw $t0, 4($s1) 4

Clicker Question: What is the IPC of this machine?
(A) 0.8 (B) 1.0 (C) 1.25 (D) 1.5 (E) 2.0

(hint: think completion rates)
9

Goal: larger instruction windows (to play with)
• Predication
• Loop unrolling
• Function in-lining
• Basic block modifications (superblocks, etc.)

Roadblocks
• Memory dependences (aliasing)
• Control dependences

10

Exploiting Intra-instruction parallelism:
Pipelining (decode A while fetching B)

Exploiting Instruction Level Parallelism (ILP):
Multiple issue pipeline (2-wide, 4-wide, etc.)
• Statically detected by compiler (VLIW)
• Dynamically detected by HW
Dynamically Scheduled (OoO)

11

aka SuperScalar Processor (c.f. Intel)
• CPU chooses multiple instructions to issue each cycle
• Compiler can help, by reordering instructions….
• … but CPU resolves hazards

12

Exploiting Intra-instruction parallelism:
Pipelining (decode A while fetching B)

Exploiting Instruction Level Parallelism (ILP):
Multiple issue pipeline (2-wide, 4-wide, etc.)
• Statically detected by compiler (VLIW)
• Dynamically detected by HW
Dynamically Scheduled (OoO)

13

Even better: Speculation/Out-of-order Execution
• Execute instructions as early as possible
• Aggressive register renaming (indirection to the

rescue!)
• Guess results of branches, loads, etc.
• Roll back if guesses were wrong
• Don’t commit results until all previous insns

committed

14

It was awesome, but then it stopped improving
Limiting factors?
• Programs dependencies
• Memory dependence detection à be conservative

– e.g. Pointer Aliasing: A[0] += 1; B[0] *= 2;

• Hard to expose parallelism
– Still limited by the fetch stream of the static program

• Structural limits
– Memory delays and limited bandwidth

• Hard to keep pipelines full, especially with branches

15

Exploiting Thread-Level parallelism
Hardware multithreading to improve utilization:
• Multiplexing multiple threads on single CPU
• Sacrifices latency for throughput
• Single thread cannot fully utilize CPU? Try more!
• Three types:
• Course-grain (has preferred thread)
• Fine-grain (round robin between threads)
• Simultaneous (hyperthreading)

16

Process: multiple threads, code, data and OS state
Threads: concurrent computations that share the
same address space
• Share: code, data, files
• Do not share: regs or stack

17

18

Data

Insns

Stack 1

PC

Thread 1

PC

PC

SP
Stack 2

Thread 2
SP

Stack 3

Thread 3
SP

Virtual
Address
Space(Heap subdivided, shared, & not shown.)

Time evolution of issue slots
• Color = thread, white = no instruction

CGMT FGMT SMT4-wide
Superscalar

tim
e

Switch to
thread B on
thread A L2

miss

Switch
threads

every cycle

Insns from
multiple
threads
coexist 19

CPU Year Clock
Rate

Pipeline
Stages

Issue
width

Out-of-order/
Speculation

Cores Power

i486 1989 25MHz 5 1 No 1 5W
Pentium 1993 66MHz 5 2 No 1 10W
Pentium Pro 1997 200MHz 10 3 Yes 1 29W
P4 Willamette 2001 2000MHz 22 3 Yes 1 75W
UltraSparc III 2003 1950MHz 14 4 No 1 90W
P4 Prescott 2004 3600MHz 31 3 Yes 1 103W

Those simpler cores did something very right.
20

486

286

8088
8080

80084004

386
Pentium

AtomP4
Itanium 2 K8

K10
Dual-core Itanium 2

21

Moore’s Law in Action

Hot Plate

Rocket Nozzle

Nuclear Reactor

Surface of Sun

Xeon

180nm 32nm

22

Power = capacitance * voltage2 * frequency
In practice: Power ~ voltage3

Reducing voltage helps (a lot)
... so does reducing clock speed
Better cooling helps

The power wall
• We can’t reduce voltage further
• We can’t remove more heat

Lower Frequency

23

Dual-Core
Underclocked -20%

Power
1.0x
1.0x

Performance
Single-Core

Power
1.2x

1.7x

Performance Single-Core
Overclocked +20%

Power
0.8x

0.51x

Performance Single-Core
Underclocked -20%

Power
Performance 1.6x

1.02x
24

CPU Year Clock
Rate

Pipeline
Stages

Issue
width

Out-of-order/
Speculation

Cores Power

i486 1989 25MHz 5 1 No 1 5W
Pentium 1993 66MHz 5 2 No 1 10W
Pentium Pro 1997 200MHz 10 3 Yes 1 29W
P4 Willamette 2001 2000MHz 22 3 Yes 1 75W
UltraSparc III 2003 1950MHz 14 4 No 1 90W
P4 Prescott 2004 3600MHz 31 3 Yes 1 103W

Those simpler cores did something very right.

Core 2006 2930MHz 14 4 Yes 2 75W
Core i5 Nehal 2010 3300MHz 14 4 Yes 1 87W
Core i5 Ivy Br 2012 3400MHz 14 4 Yes 8 77W
UltraSparc T1 2005 1200MHz 6 1 No 8 70W

25

Q: So lets just all use multicore from now on!
A: Software must be written as parallel program

Multicore difficulties
• Partitioning work
• Coordination & synchronization
• Communications overhead
• How do you write parallel programs?

... without knowing exact underlying architecture?

26

Partition work so all cores have something to do

27

Need to partition so all cores are actually working

28

If tasks have a serial part and a parallel part…
Example:

step 1: divide input data into n pieces
step 2: do work on each piece
step 3: combine all results

Recall: Amdahl’s Law
As number of cores increases …
• time to execute parallel part?
• time to execute serial part?
• Serial part eventually dominates

goes to zero
Remains the same

29

30

Necessity, not luxury
Power wall

Not easy to get performance out of

Many solutions
Pipelining
Multi-issue
Multithreading
Multicore

31

Q: So lets just all use multicore from now on!
A: Software must be written as parallel program

Multicore difficulties
• Partitioning work
• Coordination & synchronization
• Communications overhead
• How do you write parallel programs?

... without knowing exact underlying architecture?

32

Cache Coherency
• Processors cache shared data à they see different

(incoherent) values for the same memory location

Synchronizing parallel programs
• Atomic Instructions
• HW support for synchronization

How to write parallel programs
• Threads and processes
• Critical sections, race conditions, and mutexes

33

Shared Memory Multiprocessor (SMP)
• Typical (today): 2 – 4 processor dies, 2 – 8 cores each
• Hardware provides single physical address space for

all processors

...Core0
Cache

Memory I/O

Interconnect

Core1
Cache

CoreN
Cache

... ...

34

...Core0
Cache

Memory I/O

Interconnect

Core1
Cache

CoreN
Cache

... ...

Thread A (on Core0) Thread B (on Core1)
for(int i = 0, i < 5; i++) { for(int j = 0; j < 5; j++) {

x = x + 1; x = x + 1;
} }
What will the value of x be after both loops finish?

35

Thread A (on Core0) Thread B (on Core1)
for(int i = 0, i < 5; i++) { for(int j = 0; j < 5; j++) {

x = x + 1; x = x + 1;
} }
What will the value of x be after both loops finish?
(x starts as 0)

a) 6
b) 8
c) 10
d) Could be any of the above
e) Couldn’t be any of the above 36

...Core0
Cache

Memory I/O

Interconnect

Core1
Cache

CoreN
Cache

... ...

Thread A (on Core0) Thread B (on Core1)
for(int i = 0, i < 5; i++) { for(int j = 0; j < 5; j++) {

LW $t0, addr(x) LW $t0, addr(x)
ADDIU $t0, $t0, 1 ADDIU $t0, $t0, 1
SW $t0, addr(x) SW $t0, addr(x)

} }

$t0=0

$t0=1

x=1

$t0=0

$t0=1

x=1

Problem!

X 0

X 0 X 0 1 1

37

Time
step

Event CPU A’s
cache

CPU B’s
cache

Memory

0 0

Executing on a write-thru cache:
Time
step

Event CPU A’s
cache

CPU B’s
cache

Memory

0 0

1 CPU A reads X 0 0

Time
step

Event CPU A’s
cache

CPU B’s
cache

Memory

0 0

1 CPU A reads X 0 0

2 CPU B reads X 0 0 0

Time
step

Event CPU A’s
cache

CPU B’s
cache

Memory

0 0

1 CPU A reads X 0 0

2 CPU B reads X 0 0 0

3 CPU A writes 1 to X 1 0 1

...Core0
Cache

Memory I/O

Interconnect

Core1
Cache

CoreN
Cache

... ...

38

Coherence
• What values can be returned by a read
• Need a globally uniform (consistent) view of a single

memory location
Solution: Cache Coherence Protocols

Consistency
• When a written value will be returned by a read
• Need a globally uniform (consistent) view of all

memory locations relative to each other
Solution: Memory Consistency Models

39

Coherence
• all copies have same data at all times

Coherence controller:
• Examines bus traffic (addresses and data)
• Executes coherence protocol

– What to do with local copy when you see
different things happening on bus

Three processor-initiated events
• Ld: load
• St: store
• WB: write-back

Two remote-initiated events
• LdMiss: read miss from another processor
• StMiss: write miss from another processor

40

CPU
D$

 d
at

a

D$
 ta

gs

CC

bus

VI (valid-invalid) protocol:
• Two states (per block in cache)

– V (valid): have block
– I (invalid): don’t have block
+ Can implement with valid bit

Protocol diagram (left)
• If you load/store a block: transition to V
• If anyone else wants to read/write block:

– Give it up: transition to I state
– Write-back if your own copy is dirty

41

I

V

Lo
ad

, S
to

re

Ld
M

iss
, S

tM
iss

, W
B

Load, Store

LdMiss/
StMiss

lw by Thread B generates an “other load miss” event (LdMiss)
• Thread A responds by sending its dirty copy, transitioning to I

42

0
V:0 0

V:1 0

I: 1V:1

1V:2

CPU0 MemCPU1Thread A
lw t0, 0(r3),
ADDIU $t0,$t0,1
sw t0,0(r3)

Thread B

lw t0, 0(r3)
ADDIU $t0,$t0,1
sw t0,0(r3)

Clicker Question:
Core A loads x into a register
Core B wants to load x into a register
What happens?
(A) they can both have a copy of X in their

cache
(B) A keeps the copy
(C) B steals the copy from A, and this is an

efficient thing to do
(D) B steals the copy from A, and this is a

sad shame
(E) B waits until A kicks X out of its cache,

then it can complete the load
43

I

V

Lo
ad

, S
to

re

Ld
M

iss
, S

tM
iss

, W
B

Load, Store

LdMiss/
StMiss

LdMiss

VI protocol is inefficient
– Only one cached copy allowed in entire system
– Multiple copies can’t exist even if read-only

– Not a problem in example
– Big problem in reality

MSI (modified-shared-invalid)
• Fixes problem: splits “V” state into two states

– M (modified): local dirty copy
– S (shared): local clean copy

• Allows either
– Multiple read-only copies (S-state) --OR--
– Single read/write copy (M-state)

44

I

M

St
or

e

St
M

iss
, W

B

Load, Store

S
Store

Load, LdMiss

StM
iss

Load

LdMiss/
StMiss

lw by Thread B generates a “other load miss” event (LdMiss)
• Thread A responds by sending its dirty copy, transitioning to S

sw by Thread B generates a “other store miss” event (StMiss)
• Thread A responds by transitioning to I

45

Thread A
lw t0, 0(r3),
ADDIU $t0,$t0,1
sw t0,0(r3)

Thread B

lw t0, 0(r3),
ADDIU $t0,$t0,1
sw t0,0(r3)

0
S:0 0

M:1 0

S:1 1S:1

I: 1M:2

CPU0 MemCPU1

Coherence introduces two new kinds of cache misses
• Upgrade miss

– On stores to read-only blocks
– Delay to acquire write permission to read-only block

• Coherence miss
– Miss to a block evicted by another processor’s requests

Making the cache larger…
• Doesn’t reduce these type of misses
• As cache grows large, these sorts of misses dominate

False sharing
• Two or more processors sharing parts of the same block
• But not the same bytes within that block (no actual sharing)
• Creates pathological “ping-pong” behavior
• Careful data placement may help, but is difficult

46

In reality: many coherence protocols
• Snooping: VI, MSI, MESI, MOESI, …

– But Snooping doesn’t scale
• Directory-based protocols

– Caches & memory record blocks’ sharing status in directory
– Nothing is free à directory protocols are slower!

Cache Coherency:
• requires that reads return most recently written value
• Is a hard problem!

47

A single core machine that supports multiple
threads can experience a coherence miss.

A. True
B. False
C. Cannot be answered with the information
given

48

What just happened???
Is MSI Cache Coherency Protocol Broken??

49

Thread A
lw t0, 0(r3)

ADDIU $t0,$t0,1
sw t0,0(x)

Thread B

lw t0, 0(r3)
ADDIU $t0,$t0,1
sw t0,0(x)

0
S:0 0
S:0 0S:0

M:1 1I:

CPU0 MemCPU1

I: 0M:1

The Previous example shows us that

a) Caches can be incoherent even if there is a
coherence protocol.

b) The MSI protocol is not rich enough to support
coherence for multi-threaded programs

c) Coherent caches are not enough to guarantee
expected program behavior.

d) Multithreading is just a really bad idea.
e) All of the above

50

Within a thread: execution is sequential
Between threads?

• No ordering or timing guarantees
• Might even run on different cores at the same time

Problem: hard to program, hard to reason about
• Behavior can depend on subtle timing differences
• Bugs may be impossible to reproduce

Cache coherency is necessary but not sufficient…
Need explicit synchronization to make guarantees about
concurrent threads!

51

Timing-dependent error involving access to shared state
Race conditions depend on how threads are scheduled

• i.e. who wins “races” to update state

Challenges of Race Conditions
• Races are intermittent, may occur rarely
• Timing dependent = small changes can hide bug

Program is correct only if all possible schedules are safe
• Number of possible schedules is huge
• Imagine adversary who switches contexts at worst possible time

52

Atomic read & write memory operation
• Between read & write: no writes to that address

Many atomic hardware primitives
• test and set (x86)
• atomic increment (x86)
• bus lock prefix (x86)
• compare and exchange (x86, ARM deprecated)
• linked load / store conditional (pair of insns)

(MIPS, ARM, PowerPC, DEC Alpha, …)

53

Load linked: LL rt, offset(rs)
“I want the value at address X. Also, start monitoring any
writes to this address.”

Store conditional: SC rt, offset(rs)
“If no one has changed the value at address X since the LL,
perform this store and tell me it worked.”

• Data at location has not changed since the LL?
– SUCCESS:

§ Performs the store
§ Returns 1 in rt

• Data at location has changed since the LL?
– FAILURE:

§ Does not perform the store
§ Returns 0 in rt 54

Load linked: LL rt, offset(rs)

Store conditional: SC rt, offset(rs)

i++
↓

LW $t0, 0($s0)
ADDIU $t0, $t0, 1
SW $t0, 0($s0)

LL $t0, 0($s0)
ADDIU $t0, $t0, 1
SC $t0, 0($s0)
BEQZ $t0, try

try:

atomic(i++)
↓

Value in memory changed between LL and SC ?
à SC returns 0 in $t0 à retry

55

Time Thread A Thread B Thread
A $t0

Thread
B $t0

Mem
[$s0]

0 0
1 try: LL $t0, 0($s0) 0 0
2 try: LL $t0, 0($s0) 0 0
3 ADDIU $t0, $t0, 1 1 0 0
4 ADDIU $t0, $t0, 1 1 1 0
5 SC $t0, 0($s0) 1 1 1
6 BEQZ $t0, try 1 1 1
7 SC $t0, 0 ($s0) 1 0 1
8 BEQZ $t0, try 1 0 1

Load linked: LL $t0, offset($s0)

Store conditional: SC $t0, offset($s0)

Success! Failure!56

Create atomic version of every instruction? NO
Does not scale or solve the problem

To eliminate races: identify Critical Sections
• only one thread can be in
• Contending threads must wait to enter

CSEnter();
Critical
section

CSExit();

T1 T2

time
CSEnter();

wait
wait
Critical
section

CSExit();
T1

T2 57

Implementation of CSEnter and CSExit
• Only one thread can hold the lock at a time

“I have the lock”

58

m = 0;
mutex_lock(int *m) {

test_and_set: LI $t0, 1
LL $t1, 0($a0)
BNEZ $t1, test_and_set
SC $t0, 0($a0)
BEQZ $t0, test_and_set

}

mutex_unlock(int *m) {
SW $zero, 0($a0)

}

This is called a
Spin lock
aka spin waiting

59

mutex_lock(int *m)
Time Thread A Thread B ThreadA ThreadB Mem

$t0 $t1 $t0 $t1 M[$a0]

0 0
1 try: LI $t0, 1 try: LI $t0, 1 1 1 0
2 LL $t1, 0($a0) LL $t1, 0($a0) 1 0 1 0 0
3 BNEZ $t1, try BNEZ $t1, try 1 0 1 0 0
4 SC $t0, 0 ($a0) 1 0 1
5 SC $t0, 0($a0) 0 0 1 0 1
6 BEQZ $t0, try BEQZ $t0, try 0 0 1 0 1
7

Success!Failure!
Critical sectiontry: LI $t0, 1

60

Goal: enforce data
structure invariants

// invariant:
// data in A[h … t-1]
char A[100];
int h = 0, t = 0;

// producer: add to tail if room
void put(char c) {
A[t] = c;
t = (t+1)%n;

}

1 2 3

head tail

// consumer: take from head
char get() {
while (t == h) { };
char c = A[h];
h = (h+1)%n;
return c;

}

1 2 3 4

head tail

2 3 4

tailhead

61

Goal: enforce data
structure invariants

// invariant:
// data in A[h … t-1]
char A[100];
int h = 0, t = 0;

// producer: add to tail if room
void put(char c) {
A[t] = c;
t = (t+1)%n;

}
// consumer: take from head
char get() {
while (t == h) { };
char c = A[h];
h = (h+1)%n;
return c;

}

Clicker Q:
What’s wrong here?

a) Will lose update to t and/or h
b) Invariant is not upheld
c) Will produce if full
d) Will consume if empty
e) All of the above

62

Goal: enforce data
structure invariants

// invariant:
// data in A[h … t-1]
char A[100];
int h = 0, t = 0;

// producer: add to tail if room
void put(char c) {
A[t] = c;
t = (t+1)%n; ß

}
// consumer: take from head
char get() {
while (t == h) { }; ß
char c = A[h];
h = (h+1)%n; ß
return c;

}

What’s wrong here?
• Could miss an update to

t or h
• Breaks invariants: only

produce if not full, only
consume if not empty

à Need to synchronize access
to shared data 63

Goal: enforce data
structure invariants

// invariant:
// data in A[h … t-1]
char A[100];
int h = 0, t = 0;

// producer: add to tail if room
void put(char c) {
A[t] = c;
t = (t+1)%n;

}

// consumer: take from head
char get() {
while (t == h) { };
char c = A[h];
h = (h+1)%n;
return c;

}

Does this fix
work?

acquire-lock()

release-lock()

acquire-lock()

release-lock()

Rule of thumb:
all access & updates
that can affect the
invariant become
critical sections

64

Lots of synchronization variations…
Reader/writer locks
• Any number of threads can hold a read lock
• Only one thread can hold the writer lock

Semaphores
• N threads can hold lock at the same time

Monitors
• Concurrency-safe data structure with 1 mutex
• All operations on monitor acquire/release mutex
• One thread in the monitor at a time

65

