
Syscalls, exceptions, and
interrupts, …oh my!

CS 3410
Computer System Organization & Programming

[D. Altinbuken, K. Bala, A. Bracy, E. Sirer, and H. Weatherspoon]

Which of the following is not a viable solution to protect
against a buffer overflow attack?
(There are multiple right & wrong answers. Pick 1 right one.)

(A) Prohibit the execution of anything stored on the Stack.
(B) Randomize the starting location of the Stack.
(C) Use only library code that requires a buffer length to

make sure it doesn’t overflow.
(D) Write only to buffers on the OS Stack where they will be

protected.
(E) Compile the executable with the highest level of

optimization flags.

Clicker Question

2

Internet Worm attacks thousands of Internet hosts
Best Wikipedia quotes:

“According to its creator, the Morris worm was not written to cause
damage, but to gauge the size of the Internet. The worm was released
from MIT to disguise the fact that the worm originally came from
Cornell.”
“The worm …determined whether to invade a new computer by
asking whether there was already a copy running. But just doing this
would have made it trivially easy to kill: everyone could run a process
that would always answer "yes”. To compensate for this possibility,
Morris directed the worm to copy itself even if the response is "yes" 1
out of 7 times. This level of replication proved excessive, and the worm
spread rapidly, infecting some computers multiple times. Morris
remarked, when he heard of the mistake, that he "should have tried it
on a simulator first”.”

November 1988: Internet Worm

3Computer Virus TV News Report 1988

• Manages all of the software and hardware
on the computer

• Many processes running at the same time,
requiring resources
• CPU, Memory, Storage, etc.

OS multiplexes these resources amongst
different processes, and isolates and
protects processes from one another!

Operating System

4

Operating System (OS) is a trusted mediator:
• Safe control transfer between processes
• Isolation (memory, registers) of processes

Operating System

5

P1 P2 P3 P4

VM filesystem net

driver driver

untrusted

disk network
card

MMU CPU

trusted
software

hardware

OS

One Brain, Many Personalities

6

You are what you execute.

Personalities:
hailstone_recursive
Microsoft Word
Minecraft
Linux ß yes, this is just software like

every other program
that runs on the CPU

Are they all equal?

Brain

• Only trusted processes should access &
change important things
• Editing TLB, Page Tables, OS code, OS $sp,

OS $fp…

• If an untrusted process could change the
OS’ $sp/$fp/$gp/etc., OS would crash!

Trusted vs. Untrusted

7

CPU Mode Bit in Process Status Register
• Many bits about the current process

(Mode bit is just one of them)

0 = user mode = untrusted
“Privileged” instructions and registers are

disabled by CPU
1 = kernel mode = trusted

All instructions and registers are enabled

Privileged Mode

8

MIPS Privileged Instructions

1. Boot sequence
• load first sector of disk (containing OS

code) to predetermined address in memory
• Mode ß 1; PC ß predetermined address

2. OS takes over
• initializes devices, MMU, timers, etc.
• loads programs from disk, sets up page

tables, etc.
• Mode ß 0; PC ß program entry point
-User programs regularly yield control back to OS

Privileged Mode at Startup

10

If an untrusted process does not have
privileges to use system resources, how can it

• Use the screen to print?
• Send message on the network?
• Allocate pages?
• Schedule processes?

Solution: System Calls

Users need access to resources

11

putc(): print character to screen
• Need to multiplex screen between competing

processes

send(): send a packet on the network
• Need to manipulate the internals of a device

sbrk(): allocate a page
• Needs to update page tables & MMU

sleep(): put current program to sleep,
wake another
• Need to update page table base register

System Call Examples

12

System call: not just a function call
• Don’t let process jump just anywhere in OS code
• OS can’t trust process’ registers (sp, fp, gp, etc.)

SYSCALL insn: safe control transfer to OS

MIPS system call convention:
• Exception handler saves temp regs, saves ra, …
• $v0 = system call number, which specifies the

operation the application is requesting

System Calls

13

Compilers do not emit SYSCALL instructions
• Compiler doesn’t know OS interface

Libraries implement standard API from
system API
libc (standard C library):
• gets() à getc()
• getc() à syscall
• sbrk() à syscall
• printf() à write()
• write() à syscall
• malloc() à sbrk()
• …

Libraries and Wrappers

14

char *gets(char *buf) {
while (...) {

buf[i] = getc();
}

}

int getc() {
asm("addiu $v0, $0, 4");
asm("syscall");

}

Invoking System Calls

15

4 is number

for getc

syscall

Anatomy of a Process, v1

16

0xfffffffc

0x00000000

0x7ffffffc
0x80000000

0x10000000

0x00400000

system reserved

stack

system reserved

code
(text)

static data

dynamic data (heap)

[user] gets
[library] getc

??

Where are the following
program components
located?
A. System Reserved
B. Stack
C. Heap
D. Data
E. Text

Clicker Questions

17

1)P1
2)the address that p1 points to
3)malloc()
4)main()
5)beyond
6)big_array

In its own address space?
� Syscall has to switch to a different address space
� Hard to support syscall arguments passed as

pointers
. . . So, NOPE

In the same address space as the user process?
• Protection bits prevent user code from writing

kernel
• Higher part of virtual memory
• Lower part of physical memory

. . . Yes, this is how we do it.

Where does the OS live?

18

All kernel text & most data:
• At same virtual address in

every address space

OS is omnipresent, available to
help user-level applications

• Typically in high memory

Full System Layout

19Virtual Memory

0xfffffffc

0x00000000

0x7ffffffc
0x80000000

0x10000000

0x00400000

stack

system reserved

code (text)

static data

dynamic data (heap)

OS Heap
OS Data

OS Stack

OS Text

Full System Layout

20Virtual Memory
OS Text
OS Data
OS Heap

OS Stack

Physical Memory

0xfffffffc

0x00000000

0x7ffffffc
0x80000000

0x10000000

0x00400000

stack

system reserved

code (text)

static data
dynamic data (heap)

OS Heap
OS Data

OS Stack

OS Text

0x00...00

Anatomy of a Process, v2

21

0xfffffffc

0x00000000

0x7ffffffc
0x80000000

0x10000000

0x00400000

system reserved

stack

system reserved

code (text)

static data

dynamic data (heap)

gets
getc

implementation of
getc() syscall

Which statement is FALSE?

A) OS manages the CPU, Memory, Devices, and
Storage.

B) OS provides a consistent API to be used by
other processes.

C) The OS kernel is always present on Disk.
D) The OS kernel is always present in Memory.
E) Any process can fetch and execute OS code

in user mode.

Clicker Question

22

Which one of the following statements is true?

A. Multiple copies of OS code reside in physical
memory because every process keeps a copy of
the kernel in its reserved address space.

B. A programmer can invoke the operating system by
using an instruction that will trigger an interrupt.

C. The OS uses its own stack when executing a
system call on behalf of user code.

D. The OS can interrupt user code via a system call.
E. The OS is always actively running on the CPU.

Clicker Question

23

SYSCALL instruction does an atomic jump to a
controlled location (i.e., MIPS 0x8000 0180)
• Saves the old (user) SP value
• Switches the SP to the kernel stack
• Saves the old (user) PC value (= return addr)
• Saves the old privilege mode
• Sets the new privilege mode to 1
• Sets the new PC to the kernel syscall handler

Inside the SYSCALL instruction

24

Kernel system call handler carries out the
desired system call
• Saves callee-save registers
• Examines the syscall number
• Checks arguments for sanity
• Performs operation
• Stores result in v0
• Restores callee-save registers
• Performs a “return from syscall” (ERET)

instruction, which restores the privilege mode,
SP and PC

Inside the SYSCALL implementation

25

Anything that isn’t a user program
executing its own user-level instructions.

System Calls:
• just one type of exceptional control flow
• Process requesting a service from the OS
• Intentional – it’s in the executable!

Exceptional Control Flow

26

Software Exceptions

27

Trap
Intentional
Examples:
System call

(OS performs service)
Breakpoint traps
Privileged instructions

Abort
Unintentional
Not recoverable
Examples:
Parity error

Fault
Unintentional but
Possibly recoverable
Examples:
Division by zero
Page fault

One of many ontology / terminology trees

Exception program counter (EPC)
• 32-bit register, holds addr of affected instruction
• Syscall case: Address of SYSCALL

Cause register
• Register to hold the cause of the exception
• Syscall case: 8, Sys

Special instructions to load TLB
• Only do-able by kernel

Hardware support for exceptions

28

Exceptional Control Flow

30

Hardware interrupts
Asynchronous
= caused by events
external to CPU

Software exceptions
Synchronous
= caused by CPU
executing an instruction

Maskable
Can be turned off by CPU
Example: alert from network device
that a packet just arrived, clock
notifying CPU of clock tick

Unmaskable
Cannot be ignored
Example: alert from the
power supply that electricity
is about to go out

AKA Exceptions

Which sequence
best describes a:

1) System Call
2) Page Fault
3) Interrupt

Clicker Q

No SYSCALL instruction. Hardware steps in:
• Saves PC of exception instruction (EPC)
• Saves cause of the interrupt/privilege (Cause

register)
• Switches the sp to the kernel stack
• Saves the old (user) SP value
• Saves the old (user) PC value
• Saves the old privilege mode
• Sets the new privilege mode to 1
• Sets the new PC to the kernel syscall hander

interrupt/exception handler

Interrupts & Unanticipated Exceptions

32

SY
SC
AL
L

Inside Interrupts & Unanticipated Exceptions

33

Kernel system call handler carries out system call
all

• Saves callee-save registers
• Examines the syscall number cause
• Checks arguments for sanity
• Performs operation
• Stores result in v0
• Restores callee-save registers
• Performs a ERET instruction (restores the

privilege mode, SP and PC)

interrupt/exception handler handles event

all

What other task requires both Hardware and
Software?

A) Virtual to Physical Address Translation
B) Branching and Jumping
C) Clearing the contents of a register
D) Pipelining instructions in the CPU
E) What are we even talking about?

Clicker Question

34

Virtual à physical address translation!
Hardware
• has a concept of operating in physical or virtual mode
• helps manage the TLB
• raises page faults
• keeps Page Table Base Register (PTBR) and ProcessID
Software/OS
• manages Page Table storage
• handles Page Faults
• updates Dirty and Reference bits in the Page Tables
• keeps TLB valid on context switch:
• Flush TLB when new process runs (x86)
• Store process id (MIPS)

Address Translation: HW/SW Division of Labor

35

1. TLB miss

2. Trap to kernel

3. Walk Page Table

4. Find page is invalid

5. Convert virtual address

to file + offset

6. Allocate page frame

• Evict page if needed

7. Initiate disk block read

into page frame

8. Disk interrupt when

DMA complete

9. Mark page as valid

10. Load TLB entry

11. Resume process at

faulting instruction

12. Execute instruction

Demand Paging on MIPS

36

