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Click any letter let me know you’re here 
today.

Instead of a DJ Clicker Question today, 
please take a minute to think about the 
question:

“What can I do to make Cornell a more 
welcoming and affirming campus?”
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Picture Memory as… ?

addr data
0xffffffff xaa

… 
…

x00

x00
xef
xcd
xab
xff

0x00000000 x00

Byte Array:
0xfffffffc

0x00000000

0x7ffffffc
0x80000000

0x10000000

0x00400000

system
reserved

stack

system
reserved

text

data

heap

Segments:

0x00000000

0xffffe000

0xfffff000

0x00003000

0x00001000

page 0

Page Array:

page 1

page 2

. . .

. . .

page n

0x00002000

0x00004000

0xffffd000

each segment 

uses some # 

of pages

New!
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A Little More About Pages
Suppose each page = 4KB

Anything in page 2 has address: 
0x00002xxx

Lower 12 bits specify which byte 
you are in the page:

0x00002200 = 0010 0000 0000 
= byte 512

upper bits = page number
lower bits =  page offset

Sound familiar?
0x00000000

0xffffe000

0xfffff000

0x00003000

0x00001000

Page Array:

…

4KB

0x00002000

0x00004000

0xffffd000
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Data Granularity
ISA: instruction specific: LB, LH, LW (MIPS)
Registers: 32 bits (MIPS)
Caches: cache line/block

Address bits divided into:
tag: sanity check for address match
index: which entry in the cache
offset: which byte in the line

Memory: page
Address bits divided into:
page number: which page in memory
index: which byte in the page
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These assumptions are embedded 
in the executable!

If they are wrong, things will break!
Recompile? Relink?

Program’s View of Memory
32-bit machine:

0x00000000 – 0xffffffff to play with 
(modulo system reserved)

2 Interesting/Dubious Assumptions:
The machine I’m running on has 4GB of DRAM.
I am the only one using this DRAM.

64-bits:
16 EB ???
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Indirection* to the Rescue!

Virtual Memory: a Solution for All Problems

• Each process has its own virtual address space
§ Program/CPU can access any address from 0…2N

§ A process is a program being executed

§ Programmer can code as if they own all of memory

• On-the-fly at runtime, for each memory access
§ all accesses are indirect through a virtual address

§ translate fake virtual address to a real physical address

§ redirect load/store to the physical address

*google David Wheeler, Butler Lampson, Leslie Lamport, and Steve Bellovin
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Virtual vs. Physical Address Spaces

A
B
C

C
B

A

Process #1’s
Virtual Address

Space

Physical 
Address 
Space

Memory 
(DRAM)

D
D

Address 
Translation

DISK
A
B
C
D

Process #2’s
Virtual Address

Space

AB

C

D

• Not contiguous
• Page vs. Address?

3
2
1
0

9
8
7
6
5
4
3
2
1
0

3
2
1
0

page page

page
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Advantages of Virtual Memory
Easy relocation
• Loader puts code anywhere in physical memory
• Virtual mappings to give illusion of correct layout
Higher memory utilization
• Provide illusion of contiguous memory
• Use all physical memory, even physical address 0x0
Easy sharing
• Different mappings for different processes / cores

And more to come…
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Virtual Memory Agenda
What is Virtual Memory?
How does Virtual memory Work?
• Address Translation
• Overhead
• Paging
• Performance
• Virtual Memory & Caches
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Address Translator: MMU
• Processes use 

virtual addresses
• DRAM uses physical 

addresses

Memory Management 
Unit (MMU)

• HW structure
• Translates virtual à

physical address    
on the fly

A
B
C

Process #1
D

A
B
C
D

Process #2

C
B

A

Physical 
Address 
Space

Memory 
(DRAM)

MMU

B

C

D

3
2
1
0

9
8
7
6
5
4
3
2
1
03

2
1
0
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Address Translation: in Page Table
OS-Managed Mapping of Virtual à Physical Pages

int page_table[220] = { 0, 5, 4, 1, … };
. . .

ppn = page_table[vpn];

Remember: 
any address 0x00001234
is x234 bytes into Page C
both virtual & physical
VP 1 à PP 5

C
B

A

Physical
Address
Space

A
B
C
D

3
2
1
0

Process’
Virtual Address

Space

9
8
7
6
5
4
3
2
1
0

Assuming each page = 4KB, lower 12 bits à offset
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1 Page Table per process
Lives in Memory, i.e., in a page (or more…)
Location stored in Page Table Base Register

Part of process state (like PC)

Page Table Basics

C
B

A

Physical
Address
Space

A
B
C
D

3
2
1
0

Process’
Virtual Address

Space

9
8
7
6
5
4
3
2
1
0

PTBR 0x00008000
Assuming each page = 4KB

. . .

00000001
00000004
00000005
000000000x00008000

0x00008004
0x00008008
0x0000800c

0x00008FFF
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Simple Address Translation
1111 1010 1111 0000 1111 0000 1111 0000

Assuming each page = 4KB

Page OffsetVirtual Page Number

Lookup in Page Table

0000 0101 1100 0011 0000 0000 1111 0000

Physical Page Number Page Offset
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Simple Page Table Translation

Memory
PTBR 0x90000000

Assuming each page = 4KB

0x10045

. . .

0xC20A3
0x4123B
0x10044
0x000000x90000000

0x90000004
0x90000008
0x9000000c

0x00008FFF

0x00000000

0x90000000

0x10045000

0xC20A3000

0x10044000

0x4123B000

0x00002 0xABCvaddr
0111231

0x4123B 0xABCpaddr
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General Address Translation
What if the page size is not 4KB?

à Page offset is no longer 12 bits

Clicker Question: 
Page size is 16KB à how many bits is page offset?
(a) 12 (b) 13 (c) 14 (d) 15 (e) 16

What if Main Memory is not 4GB?
à Physical page number is no longer 20 bits

Clicker Question: 
Page size 4KB, Main Memory 512 MB 

à how many bits is PPN?
(a) 14 (b) 15 (c) 16 (d) 17 (e) 18
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Virtual Memory Agenda
What is Virtual Memory?
How does Virtual memory Work?
• Address Translation
• Overhead
• Paging
• Performance
• Virtual Memory & Caches
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Page Table Overhead
• How large is a Page Table?
• Virtual address space (for each process):

§ Given: total virtual memory: 232 bytes = 4GB
§ Given: page size: 212 bytes = 4KB
§ # entries in PageTable?
§ size of PageTable?
§ This is one, big contiguous array, by the way!

• Physical address space:
§ Given: total physical memory: 229 bytes = 512MB
§ overhead for 10 processes?
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Page Table Overhead
• How large is PageTable?
• Virtual address space (for each process):

§ Given: total virtual memory: 232 bytes = 4GB
§ Given: page size: 212 bytes = 4KB
§ # entries in PageTable?
§ size of PageTable?

• Physical address space:
§ total physical memory: 229 bytes = 512MB
§ overhead for 10 processes?

220 = 1 million entries
PTE size = 4 bytes
àPageTable size = 4 x 220 = 4MB

10 x 4MB = 40 MB of overhead!
• 40 MB /512 MB = 7.8% overhead, 
space due to PageTable 19



But Wait... There’s more!
• Page Table Entry won’t be just an integer
• Meta-Data

§ Valid Bits
• What PPN means “not mapped”? No such number…
• At first: not all virtual pages will be in physical memory
• Later: might not have enough physical memory to map 

all virtual pages
§ Page Permissions

• R/W/X permission bits for each PTE
• Code: read-only, executable
• Data: writeable, not executable
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Less Simple Page Table

V R W X
Physical Page 

Number
0
1 1 0 1 0xC20A3
0
0 1 1 0 0x10045

1 0x4123B
1 1 1 0 0x10044
0

Text

Data

0x00000000

0x90000000

0x10045000

0x4123B000

0xC20A3000

Stack
0x10044000

Aliasing: mapping several virtual 

addresses à same physical page

Process tries to access a page without 
proper permissions

Segmentation Fault
Examples:
Write to read-only? à process killed
Execute non-executable? à process killed
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Now how big is this Page Table?
struct pte_t page_table[220]
Each PTE = 8 bytes
How many pages in memory will the page table 
take up?

Clicker Question: (a) 4 million (222) pages
(b) 2048 (211) pages
(c) 1024 (210) pages
(d) 4 billion (232) pages
(e) 4K (212) pages

Assuming each page = 4KB
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Multi-Level Page Table
10 bits

PTBR

10 bits 10 bits vaddr

PDEntry

Page Directory

Page Table

PTEntry
Page

Word

2

* Indirection to the Rescue, AGAIN!

31                    22 21                  12  11                     2 1 0 

PPN

Where is my 

translation?

Where is my 

physical 

page?

Also referred to as 
Level 1 and Level 2 

Page Tables23



Multi-Level Page Table
Doesn’t this take up more memory than before?

Benefits
• Don’t need 4MB contiguous physical memory
• Don’t need to allocate every PageTable, only 

those containing valid PTEs

Drawbacks
• Performance: Longer lookups
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Virtual Memory Agenda
What is Virtual Memory?
How does Virtual memory Work?
• Address Translation
• Overhead
• Paging
• Performance
• Virtual Memory & Caches
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Paging
What if process requirements > physical memory?

Virtual starts earning its name

Memory acts as a cache for secondary storage (disk)
§ Swap memory pages out to disk when not in use
§ Page them back in when needed

Courtesy of Temporal & Spatial Locality (again!)
§ Pages used recently mostly likely to be used again

More Meta-Data:
• Dirty Bit, Recently Used, etc.
• OS may access this meta-data to choose a victim
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Paging

Example: accessing address 

beginning with 0x00003

(PageTable[3]) results in a Page Fault 

which will page the data in from disk 

sector 200

V R W X D

Physical Page 
Number

0 --

1 1 0 1 0 0x10045

0 --

0 --

0 0 disk sector 200

0 0 disk sector 25

1 1 1 0 1 0x00000

0 --

0x00000000

0x90000000

0x10045000

0x4123B000

0xC20A3000

25
200
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Page Fault
Valid bit in Page Table = 0 
à means page is not in memory

OS takes over:
• Choose a physical page to replace

§ “Working set”: refined LRU, tracks page usage
• If dirty, write to disk
• Read missing page from disk

§ Takes so long (~10ms), OS schedules another task

Performance-wise page faults are really bad!
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Virtual Memory Agenda
What is Virtual Memory?
How does Virtual memory Work?
• Address Translation
• Overhead
• Paging
• Performance
• Virtual Memory & Caches
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Watch Your Performance Tank!
For every instruction:
• MMU translates address (virtual à physical)

§ Uses PTBR to find Page Table in memory
§ Looks up entry for that virtual page

• Fetch the instruction using physical address
§ Access Memory Hierarchy (I$ à L2 à Memory)

• Repeat at Memory stage for load/store insns
§ Translate address
§ Now you perform the load/store
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Translation Lookaside Buffer (TLB)
• Small, fast cache 
• Holds VPNàPPN translations
• Exploints temporal locality in pagetable
• TLB Hit: huge performance savings
• TLB Miss: invoke TLB miss handler

• Put translation in TLB for later

VPN PPN
VPN PPN
VPN PPN

“tag” “data”CPU

VA

PA

VA

PA
MMU TLB

VA
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TLB Parameters
Typical
• very small (64 – 256 entries) à very fast
• fully associative, or at least set associative
• tiny block size: why?

Example: Intel Nehalem TLB
• 128-entry L1 Instruction TLB, 4-way LRU
• 64-entry L1 Data TLB, 4-way LRU
• 512-entry L2 Unified TLB, 4-way LRU
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TLB to the Rescue!
For every instruction:
• Translate the address (virtual à physical)

§ CPU checks TLB
§ That failing, walk the Page Table

• Use PTBR to find Page Table in memory
• Look up entry for that virtual page
• Cache the result in the TLB

• Fetch the instruction using physical address
§ Access Memory Hierarchy (I$ à L2 à Memory)

• Repeat at Memory stage for load/store insns
§ CPU checks TLB, translate if necessary
§ Now perform load/store
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Clicker Question
True or False?

The presence of a TLB is part of the ISA.

(A) True
(B) False
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Virtual Memory Agenda
What is Virtual Memory?
How does Virtual memory Work?
• Address Translation
• Overhead
• Paging
• Performance
• Virtual Memory & Caches
• Caches use physical addresses
• Prevents sharing except when intended
• Works beautifully!

35



yes

Translation in Action

Next Topic:
Exceptional Control Flow

Virtual Address

TLB Access

TLB 
Hit?

no

Physical 
Address

$ Access

$
Hit?

yes

no

deliver 
Data back 

to CPU

DRAM 
Access

TLB miss 

handler

(HW or OS)

DRAM
Hit?

yes

36

Clicker Question:
In this Diagram there 

cannot be a DRAM miss 
here.

(A) True (B) False



Takeaways
Need a map to translate a “fake” virtual address (from process) to a 
“real” physical Address (in memory).

The map is a Page Table: ppn = PageTable[vpn]

A page is constant size block of virtual memory.  Often ~4KB to reduce 
the number of entries in a PageTable. 

Page Table can enforce Read/Write/Execute permissions on a per page 
basis.  Can allocate memory on a per page basis.  Also need a valid bit, 
and a few others.

Space overhead due to Page Table is significant. 
Solution: another level of indirection! 
Two-level of Page Table significantly reduces overhead.

Time overhead due to Address Translations also significant.
Solution: caching!  Translation Lookaside Buffer (TLB) acts as a cache 
for the Page Table and significantly improves performance. 
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