
Virtual Memory

CS 3410
Computer System Organization & Programming

[K. Bala, A. Bracy, E. Sirer, and H. Weatherspoon]

Click any letter let me know you’re here
today.

Instead of a DJ Clicker Question today,
please take a minute to think about the
question:

“What can I do to make Cornell a more
welcoming and affirming campus?”

2

Picture Memory as… ?

addr data
0xffffffff xaa

…
…

x00

x00
xef
xcd
xab
xff

0x00000000 x00

Byte Array:
0xfffffffc

0x00000000

0x7ffffffc
0x80000000

0x10000000

0x00400000

system
reserved

stack

system
reserved

text

data

heap

Segments:

0x00000000

0xffffe000

0xfffff000

0x00003000

0x00001000

page 0

Page Array:

page 1

page 2

. . .

. . .

page n

0x00002000

0x00004000

0xffffd000

each segment

uses some #

of pages

New!

3

A Little More About Pages
Suppose each page = 4KB

Anything in page 2 has address:
0x00002xxx

Lower 12 bits specify which byte
you are in the page:

0x00002200 = 0010 0000 0000
= byte 512

upper bits = page number
lower bits = page offset

Sound familiar?
0x00000000

0xffffe000

0xfffff000

0x00003000

0x00001000

Page Array:

…

4KB

0x00002000

0x00004000

0xffffd000

4

Data Granularity
ISA: instruction specific: LB, LH, LW (MIPS)
Registers: 32 bits (MIPS)
Caches: cache line/block

Address bits divided into:
tag: sanity check for address match
index: which entry in the cache
offset: which byte in the line

Memory: page
Address bits divided into:
page number: which page in memory
index: which byte in the page

5

These assumptions are embedded
in the executable!

If they are wrong, things will break!
Recompile? Relink?

Program’s View of Memory
32-bit machine:

0x00000000 – 0xffffffff to play with
(modulo system reserved)

2 Interesting/Dubious Assumptions:
The machine I’m running on has 4GB of DRAM.
I am the only one using this DRAM.

64-bits:
16 EB ???

6

Indirection* to the Rescue!

Virtual Memory: a Solution for All Problems

• Each process has its own virtual address space
§ Program/CPU can access any address from 0…2N

§ A process is a program being executed

§ Programmer can code as if they own all of memory

• On-the-fly at runtime, for each memory access
§ all accesses are indirect through a virtual address

§ translate fake virtual address to a real physical address

§ redirect load/store to the physical address

*google David Wheeler, Butler Lampson, Leslie Lamport, and Steve Bellovin

7

Virtual vs. Physical Address Spaces

A
B
C

C
B

A

Process #1’s
Virtual Address

Space

Physical
Address
Space

Memory
(DRAM)

D
D

Address
Translation

DISK
A
B
C
D

Process #2’s
Virtual Address

Space

AB

C

D

• Not contiguous
• Page vs. Address?

3
2
1
0

9
8
7
6
5
4
3
2
1
0

3
2
1
0

page page

page

8

Advantages of Virtual Memory
Easy relocation
• Loader puts code anywhere in physical memory
• Virtual mappings to give illusion of correct layout
Higher memory utilization
• Provide illusion of contiguous memory
• Use all physical memory, even physical address 0x0
Easy sharing
• Different mappings for different processes / cores

And more to come…

9

Virtual Memory Agenda
What is Virtual Memory?
How does Virtual memory Work?
• Address Translation
• Overhead
• Paging
• Performance
• Virtual Memory & Caches

10

Address Translator: MMU
• Processes use

virtual addresses
• DRAM uses physical

addresses

Memory Management
Unit (MMU)

• HW structure
• Translates virtual à

physical address
on the fly

A
B
C

Process #1
D

A
B
C
D

Process #2

C
B

A

Physical
Address
Space

Memory
(DRAM)

MMU

B

C

D

3
2
1
0

9
8
7
6
5
4
3
2
1
03

2
1
0

11

Address Translation: in Page Table
OS-Managed Mapping of Virtual à Physical Pages

int page_table[220] = { 0, 5, 4, 1, … };
. . .

ppn = page_table[vpn];

Remember:
any address 0x00001234
is x234 bytes into Page C
both virtual & physical
VP 1 à PP 5

C
B

A

Physical
Address
Space

A
B
C
D

3
2
1
0

Process’
Virtual Address

Space

9
8
7
6
5
4
3
2
1
0

Assuming each page = 4KB, lower 12 bits à offset
12

1 Page Table per process
Lives in Memory, i.e., in a page (or more…)
Location stored in Page Table Base Register

Part of process state (like PC)

Page Table Basics

C
B

A

Physical
Address
Space

A
B
C
D

3
2
1
0

Process’
Virtual Address

Space

9
8
7
6
5
4
3
2
1
0

PTBR 0x00008000
Assuming each page = 4KB

. . .

00000001
00000004
00000005
000000000x00008000

0x00008004
0x00008008
0x0000800c

0x00008FFF

13

3
2
1
0

Simple Address Translation
1111 1010 1111 0000 1111 0000 1111 0000

Assuming each page = 4KB

Page OffsetVirtual Page Number

Lookup in Page Table

0000 0101 1100 0011 0000 0000 1111 0000

Physical Page Number Page Offset

14

Simple Page Table Translation

Memory
PTBR 0x90000000

Assuming each page = 4KB

0x10045

. . .

0xC20A3
0x4123B
0x10044
0x000000x90000000

0x90000004
0x90000008
0x9000000c

0x00008FFF

0x00000000

0x90000000

0x10045000

0xC20A3000

0x10044000

0x4123B000

0x00002 0xABCvaddr
0111231

0x4123B 0xABCpaddr

15

General Address Translation
What if the page size is not 4KB?

à Page offset is no longer 12 bits

Clicker Question:
Page size is 16KB à how many bits is page offset?
(a) 12 (b) 13 (c) 14 (d) 15 (e) 16

What if Main Memory is not 4GB?
à Physical page number is no longer 20 bits

Clicker Question:
Page size 4KB, Main Memory 512 MB

à how many bits is PPN?
(a) 14 (b) 15 (c) 16 (d) 17 (e) 18

16

Virtual Memory Agenda
What is Virtual Memory?
How does Virtual memory Work?
• Address Translation
• Overhead
• Paging
• Performance
• Virtual Memory & Caches

17

Page Table Overhead
• How large is a Page Table?
• Virtual address space (for each process):

§ Given: total virtual memory: 232 bytes = 4GB
§ Given: page size: 212 bytes = 4KB
§ # entries in PageTable?
§ size of PageTable?
§ This is one, big contiguous array, by the way!

• Physical address space:
§ Given: total physical memory: 229 bytes = 512MB
§ overhead for 10 processes?

18

Page Table Overhead
• How large is PageTable?
• Virtual address space (for each process):

§ Given: total virtual memory: 232 bytes = 4GB
§ Given: page size: 212 bytes = 4KB
§ # entries in PageTable?
§ size of PageTable?

• Physical address space:
§ total physical memory: 229 bytes = 512MB
§ overhead for 10 processes?

220 = 1 million entries
PTE size = 4 bytes
àPageTable size = 4 x 220 = 4MB

10 x 4MB = 40 MB of overhead!
• 40 MB /512 MB = 7.8% overhead,
space due to PageTable 19

But Wait... There’s more!
• Page Table Entry won’t be just an integer
• Meta-Data

§ Valid Bits
• What PPN means “not mapped”? No such number…
• At first: not all virtual pages will be in physical memory
• Later: might not have enough physical memory to map

all virtual pages
§ Page Permissions

• R/W/X permission bits for each PTE
• Code: read-only, executable
• Data: writeable, not executable

20

Less Simple Page Table

V R W X
Physical Page

Number
0
1 1 0 1 0xC20A3
0
0 1 1 0 0x10045

1 0x4123B
1 1 1 0 0x10044
0

Text

Data

0x00000000

0x90000000

0x10045000

0x4123B000

0xC20A3000

Stack
0x10044000

Aliasing: mapping several virtual

addresses à same physical page

Process tries to access a page without
proper permissions

Segmentation Fault
Examples:
Write to read-only? à process killed
Execute non-executable? à process killed

21

1 1 0 1 0xC20A3

Now how big is this Page Table?
struct pte_t page_table[220]
Each PTE = 8 bytes
How many pages in memory will the page table
take up?

Clicker Question: (a) 4 million (222) pages
(b) 2048 (211) pages
(c) 1024 (210) pages
(d) 4 billion (232) pages
(e) 4K (212) pages

Assuming each page = 4KB
22

Multi-Level Page Table
10 bits

PTBR

10 bits 10 bits vaddr

PDEntry

Page Directory

Page Table

PTEntry
Page

Word

2

* Indirection to the Rescue, AGAIN!

31 22 21 12 11 2 1 0

PPN

Where is my

translation?

Where is my

physical

page?

Also referred to as
Level 1 and Level 2

Page Tables23

Multi-Level Page Table
Doesn’t this take up more memory than before?

Benefits
• Don’t need 4MB contiguous physical memory
• Don’t need to allocate every PageTable, only

those containing valid PTEs

Drawbacks
• Performance: Longer lookups

24

Virtual Memory Agenda
What is Virtual Memory?
How does Virtual memory Work?
• Address Translation
• Overhead
• Paging
• Performance
• Virtual Memory & Caches

25

Paging
What if process requirements > physical memory?

Virtual starts earning its name

Memory acts as a cache for secondary storage (disk)
§ Swap memory pages out to disk when not in use
§ Page them back in when needed

Courtesy of Temporal & Spatial Locality (again!)
§ Pages used recently mostly likely to be used again

More Meta-Data:
• Dirty Bit, Recently Used, etc.
• OS may access this meta-data to choose a victim

26

Paging

Example: accessing address

beginning with 0x00003

(PageTable[3]) results in a Page Fault

which will page the data in from disk

sector 200

V R W X D

Physical Page
Number

0 --

1 1 0 1 0 0x10045

0 --

0 --

0 0 disk sector 200

0 0 disk sector 25

1 1 1 0 1 0x00000

0 --

0x00000000

0x90000000

0x10045000

0x4123B000

0xC20A3000

25
200

27

Page Fault
Valid bit in Page Table = 0
à means page is not in memory

OS takes over:
• Choose a physical page to replace

§ “Working set”: refined LRU, tracks page usage
• If dirty, write to disk
• Read missing page from disk

§ Takes so long (~10ms), OS schedules another task

Performance-wise page faults are really bad!

28

Virtual Memory Agenda
What is Virtual Memory?
How does Virtual memory Work?
• Address Translation
• Overhead
• Paging
• Performance
• Virtual Memory & Caches

29

Watch Your Performance Tank!
For every instruction:
• MMU translates address (virtual à physical)

§ Uses PTBR to find Page Table in memory
§ Looks up entry for that virtual page

• Fetch the instruction using physical address
§ Access Memory Hierarchy (I$ à L2 à Memory)

• Repeat at Memory stage for load/store insns
§ Translate address
§ Now you perform the load/store

30

Translation Lookaside Buffer (TLB)
• Small, fast cache
• Holds VPNàPPN translations
• Exploints temporal locality in pagetable
• TLB Hit: huge performance savings
• TLB Miss: invoke TLB miss handler

• Put translation in TLB for later

VPN PPN
VPN PPN
VPN PPN

“tag” “data”CPU

VA

PA

VA

PA
MMU TLB

VA

31

TLB Parameters
Typical
• very small (64 – 256 entries) à very fast
• fully associative, or at least set associative
• tiny block size: why?

Example: Intel Nehalem TLB
• 128-entry L1 Instruction TLB, 4-way LRU
• 64-entry L1 Data TLB, 4-way LRU
• 512-entry L2 Unified TLB, 4-way LRU

32

TLB to the Rescue!
For every instruction:
• Translate the address (virtual à physical)

§ CPU checks TLB
§ That failing, walk the Page Table

• Use PTBR to find Page Table in memory
• Look up entry for that virtual page
• Cache the result in the TLB

• Fetch the instruction using physical address
§ Access Memory Hierarchy (I$ à L2 à Memory)

• Repeat at Memory stage for load/store insns
§ CPU checks TLB, translate if necessary
§ Now perform load/store

33

Clicker Question
True or False?

The presence of a TLB is part of the ISA.

(A) True
(B) False

34

Virtual Memory Agenda
What is Virtual Memory?
How does Virtual memory Work?
• Address Translation
• Overhead
• Paging
• Performance
• Virtual Memory & Caches
• Caches use physical addresses
• Prevents sharing except when intended
• Works beautifully!

35

yes

Translation in Action

Next Topic:
Exceptional Control Flow

Virtual Address

TLB Access

TLB
Hit?

no

Physical
Address

$ Access

$
Hit?

yes

no

deliver
Data back

to CPU

DRAM
Access

TLB miss

handler

(HW or OS)

DRAM
Hit?

yes

36

Clicker Question:
In this Diagram there

cannot be a DRAM miss
here.

(A) True (B) False

Takeaways
Need a map to translate a “fake” virtual address (from process) to a
“real” physical Address (in memory).

The map is a Page Table: ppn = PageTable[vpn]

A page is constant size block of virtual memory. Often ~4KB to reduce
the number of entries in a PageTable.

Page Table can enforce Read/Write/Execute permissions on a per page
basis. Can allocate memory on a per page basis. Also need a valid bit,
and a few others.

Space overhead due to Page Table is significant.
Solution: another level of indirection!
Two-level of Page Table significantly reduces overhead.

Time overhead due to Address Translations also significant.
Solution: caching! Translation Lookaside Buffer (TLB) acts as a cache
for the Page Table and significantly improves performance.

37

