
Anne Bracy
CS 3410

Computer Science
Cornell University

[K. Bala, A. Bracy, S. McKee, E. Sirer, H. Weatherspoon]

5

ALU

5 5

control

Reg.
File

PC

Prog.
Mem

inst

+4

Data
Mem

Fetch Decode Execute Memory WB

A Single cycle processor – this diagram is not 100% spatial2

5

ALU

5 5

control

Reg.
File

PC

Prog.
Mem

inst

+4

Data
Mem

3

Which instruction is more likely to
determine the speed of the clock?
A. Jump Register
B. Add
C. Store
D. Load
E. Either Load or Store

Basic CPU execution loop
1. Instruction Fetch
2. Instruction Decode
3. Execution (ALU)
4. Memory Access
5. Register Writeback

4

5

insn0. F, D, X, M, W

Single-cycle

insn1. F, D, X, M, W

Pipelined
insn0.Dinsn0.F

insn1.Dinsn1.F
insn0.M
insn1.X

insn0.X insn0.W
insn1.M insn1.W

5-stage Pipeline
• Implementation
• Working Example

6

Hazards
• Structural
• Data Hazards
• Control Hazards

Write-
BackMemory

Instruction
Fetch Execute

Instruction
Decode

extend

register
file

control

7

alu

memory

din dout

addr
PC

memory

new
pc

in
st

IF/ID ID/EX EX/MEM MEM/WB

im
m

B
A

ct
rl

ct
rl

ct
rl

B
D D

M

compute
jump/branch

targets

+4

8

1 2 3 4 5 6 7 8 9Cycle

Latency:
Throughput:

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

Latency: 5 cycles
Throughput: 1 insn/cycle CPI = 1

add

nand

lw

add

sw

• Break datapath into multiple cycles (here 5)
• Parallel execution increases throughput
• Balanced pipeline very important
• Slowest stage determines clock rate
• Imbalance kills performance

• Add pipeline registers (flip-flops) for isolation
• Each stage begins by reading values from latch
• Each stage ends by writing values to latch

• Resolve hazards

9

10

Stage Perform
Functionality Latch values of interest

Fetch Use PC to index Program Memory,
increment PC

Instruction bits (to be decoded)
PC + 4 (to compute branch targets)

Decode Decode instruction, generate
control signals, read register file

Control information, Rd index,
immediates, offsets, register values (Ra,
Rb), PC+4 (to compute branch targets)

Execute
Perform ALU operation
Compute targets (PC+4+offset,
etc.) in case this is a branch,
decide if branch taken

Control information, Rd index, etc.
Result of ALU operation, value in case
this is a store instruction

Memory Perform load/store if needed,
address is ALU result

Control information, Rd index, etc.
Result of load, pass result from execute

Writeback Select value, write to register file

5

ALU

5 5

control

Reg.
File

PC

Prog.
Mem

inst

+4

Data
Mem

Fetch Decode Execute Memory WB

• Fetch 32-bit instruction from memory
• Increment PC = PC + 4

11

12

PC

instruction
memory

in
st

addr mc

00 = read word

IF/ID

Re
st

 o
f p

ip
el

in
e

+4

PC
+4

pc-sel

pc-reg
pc-rel

pc-abs
•PC+4
•pc-reg (PC registers: JR)
•pc-rel (PC-relative: BEQ, BNE)
•pc-abs (PC absolute: J and JAL)

5

ALU

5 5

control

Reg.
File

PC

Prog.
Mem

inst

+4

Data
Mem

Fetch Decode Execute Memory WB

• Gather data from the instruction
• Read opcode; determine instruction type, field lengths
• Read in data from register file

(0, 1, or 2 reads for jump, addi, or add, respectively)
13

14

ct
rl

ID/EX

Re
st

 o
f p

ip
el

in
e

PC
+4

in
st

IF/ID

PC
+4

St
ag

e
1:

 In
st

ru
ct

io
n

Fe
tc

h

register
file

WE
Rd

Ra Rb

D
B

A

B
A

extend im
m

decode

result

dest

5

ALU

5 5

control

Reg.
File

PC

Prog.
Mem

inst

+4

Data
Mem

Fetch Decode Execute Memory WB

• Useful work done here (+, -, *, /), shift, logic operation,
comparison (slt)

• Load/Store? lw $t2, 32($t3) à Compute address
15

St
ag

e
2:

 In
st

ru
ct

io
n

De
co

de

pc-rel

pc-abs

16

ct
rl

EX/MEM

Re
st

 o
f p

ip
el

in
e

B
D

ct
rl

ID/EX

PC
+4

B
A

alu

+
�

branch?
im

m
pc-sel

pc-reg

ta
rg

et

5

ALU

5 5

control

Reg.
File

PC

Prog.
Mem

inst

+4

Data
Mem

Fetch Decode Execute Memory WB

• Used by load and store instructions only
• Other instructions will skip this stage

addr

Data

Data

R/W

17

18

ct
rl

MEM/WB

Re
st

 o
f p

ip
el

in
e

St
ag

e
3:

 E
xe

cu
te

M
D

ct
rl

EX/MEM

B
D

memory

din dout

addr

mcta
rg

et

branch?pc-sel

pc-rel

pc-abs

pc-reg

5

ALU

5 5

control

Reg.
File

PC

Prog.
Mem

inst

+4

Data
Mem

Fetch Decode Execute Memory WB

• Write to register file
– For arithmetic ops, logic, shift, etc, load. What about stores?

• Update PC
– For branches, jumps

19

20

St
ag

e
4:

 M
em

or
y

ct
rl

MEM/WB

M
D

result

dest

IF/ID

+4

ID/EX EX/MEM MEM/WB

mem

din dout

addrin
st

PC
+4

B
A

Rt

B
D

M
D

PC
+4

im
m

ct
rl

ta
rg
et

OP
Rd

OP
PC

inst
mem

Rd

Ra Rb

D
B

A

Rd

21

Consider a non-pipelined processor with clock
period C (e.g., 50 ns). If you divide the processor
into N stages (e.g., 5) , your new clock period will
be:

A. C
B. N
C. less than C/N
D. C/N
E. greater than C/N

22

• Instructions same length
• 32 bits, easy to fetch and then decode

• 3 types of instruction formats
• Easy to route bits between stages
• Can read a register source before even knowing

what the instruction is
• Memory access through lw and sw only

• Access memory after ALU

23

5-stage Pipeline
• Implementation
• Working Example

24

Hazards
• Structural
• Data Hazards
• Control Hazards

add r3 ß r1, r2
nand r6 ß r4, r5
lw r4 ß 20(r2)
add r5 ß r2, r5
sw r7 à 12(r3)

Assume 8-register machine

25

data
dest

IF/ID ID/EX EX/MEM MEM/WB

extend

0
M
U
X

0

Time: 0
26

PC

Re
gi

st
er

 fi
le

M
U
XA

L
U

M
U
X

4

Data
mem

+

M
U
X

Bits 11-15
Bits 16-20

nop

0

0

0

04
0

0

nop

0

0

nop

0

0

0

0

add 3 1 2

9
12
18
7

36

41

0

22

R2

R3
R4

R5

R1

R6

R0

R7

Bits 26-31

data
dest

Fetch:
add 3 1 2

add 3 1 2

IF/ID ID/EX EX/MEM MEM/WB

extend

0
M
U
X

0

Time: 1
27

PC

Re
gi

st
er

 fi
le

M
U
XA

L
U

M
U
X

4

Data
mem

+

M
U
X

Bits 11-15
Bits 16-20

add

3

9

36

48
0

0

nop

0

0

nop

0

0

0

0nand 6 4 5

9
12
18
7

36

41

0

22

R2

R3
R4

R5

R1

R6

R0

R7

1
2

Bits 26-31

data
dest

Fetch:
nand 6 4 5

nand 6 4 5 add 3 1 2

IF/ID ID/EX EX/MEM MEM/WB

extend

2
M
U
X

3

Time: 2
28

PC

Re
gi

st
er

 fi
le

M
U
XA

L
U

M
U
X

4

Data
mem

+

M
U
X

Bits 11-15
Bits 16-20

nand

6

7

18

812
4

45

add

3

9

nop

0

0

0

0lw
 4 20(2)

9
12
18
7

36

41

0

22

R2

R3
R4

R5

R1

R6

R0

R7

4
5

Bits 26-31

data
dest

Fetch:
lw 4 20(2)

lw 4 20(2) nand 6 4 5 add 3 1 2

36

9

3

IF/ID ID/EX EX/MEM MEM/WB

extend

5
M
U
X

6 3
2

Time: 3
29

PC

Re
gi

st
er

 fi
le

M
U
XA

L
U

M
U
X

4

Data
mem

+

M
U
X

Bits 11-15
Bits 16-20

lw

20

18

9

1216
8

-3

nand

6

7

add

3

45

0

0add 5 2 5

9
12
18
7

36

41

0

22

R2

R3
R4

R5

R1

R6

R0

R7

2
4

Bits 26-31

data
dest

Fetch:
add 5 2 5

add 5 2 5 lw 4 20(2) nand 6 4 5 add 3 1 2

18

7

6

45

3

IF/ID ID/EX EX/MEM MEM/WB

extend

4
M
U
X

0 6
5

Time: 4

nand

18 = 01 0010
7 = 00 0111

-3 = 11 1101

30

PC

Re
gi

st
er

 fi
le

M
U
XA

L
U

M
U
X

4

Data
mem

+

M
U
X

Bits 11-15
Bits 16-20

add

5

7

9

1620
12

29

lw

4

18

nand

6

-3

0

0sw
 7 12(3)

9
45
18
7

36

41

0

22

R2

R3
R4

R5

R1

R6

R0

R7

2
5

Bits 26-31

data
dest

Fetch:
sw 7 12(3)

sw 7 12(3) add 5 2 5 lw 4 20 (2) nand 6 4 5 add 3 1 2

9

20

4

-3

6

45

3

IF/ID ID/EX EX/MEM MEM/WB

extend

5
M
U
X

5 0
4

Time: 5
31

PC

Re
gi

st
er

 fi
le

M
U
XA

L
U

M
U
X

4

Data
mem

+

M
U
X

Bits 11-15
Bits 16-20

sw

12

22

45

20
16

16

add

5

7

lw

4

29

99

0
9

45
18
7

36

-3

0

22

R2

R3
R4

R5

R1

R6

R0

R7

3
7

Bits 26-31

data
dest

No more
instructions

nop sw 7 12(3) add 5 2 5 lw 4 20(2) nand 6 4 5

9

7

5

29

4

-3

6

IF/ID ID/EX EX/MEM MEM/WB

extend

7
M
U
X

0 5
5

Time: 6
32

PC

Re
gi

st
er

 fi
le

M
U
XA

L
U

M
U
X

4

Data
mem

+

M
U
X

Bits 11-15
Bits 16-20

20

57

sw

7

22

add

5

16

0

0
9

45
99
7

36

-3

0

22

R2

R3
R4

R5

R1

R6

R0

R7

Bits 26-31

data
dest

No more
instructions

nop nop sw 7 12(3) add 5 2 5 lw 4 20(2)

45

7

12

16

5

99

4

IF/ID ID/EX EX/MEM MEM/WB

extend

M
U
X

0
7

Time: 7
33

PC

Re
gi

st
er

 fi
le

M
U
XA

L
U

M
U
X

4

Data
mem

+

M
U
X

Bits 11-15
Bits 16-20

sw

7

57

0

9
45
99
16

36

-3

0

22

R2

R3
R4

R5

R1

R6

R0

R7

Bits 26-31

data
dest

No more
instructions

nop nop nop sw 7 12(3) add 5 2 5

2257

22

16

5

Slides thanks to Sally McKee

IF/ID ID/EX EX/MEM MEM/WB

extend

M
U
X

Time: 8
34

PC

Re
gi

st
er

 fi
le

M
U
XA

L
U

M
U
X

4

Data
mem

+

M
U
X

Bits 11-15
Bits 16-20

9
45
99
16

36

-3

0

22

R2

R3
R4

R5

R1

R6

R0

R7

Bits 21-23

data
dest

No more
instructions

nop nop nop nop sw 7 12(3)

IF/ID ID/EX EX/MEM MEM/WB

extend

M
U
X

Time: 9
35

Pipelining is great because:

A. You can fetch and decode the same instruction
at the same time.

B. You can fetch two instructions at the same time.
C. You can fetch one instruction while decoding

another.
D. Instructions only need to visit the pipeline

stages that they require.
E. C and D

36

5-stage Pipeline
• Implementation
• Working Example

37

Hazards
• Structural
• Data Hazards
• Control Hazards

Correctness problems associated w/processor design

1. Structural hazards
Same resource needed for different purposes at the
same time (Possible: ALU, Register File, Memory)

2. Data hazards
Instruction output needed before it’s available

3. Control hazards
Next instruction PC unknown at time of Fetch

38

39

add r3, r2, r1
nop
nop

add r6, r5, r4

data
mem

inst
mem

D
B

A

IF ID Ex M W
IF ID Ex M W

IF ID Ex M W

add r3, r2,r1nopadd r6, r5, r4

Problem: Need to read from and write to Register File at the same time
Solution: negate RF clock: write first half, read second half

nop

IF ID Ex M W

Dependence: relationship between two insns
• Data: two insns use same storage location
• Control: 1 insn affects whether another executes at all
• Not a bad thing, programs would be boring otherwise
• Enforced by making older insn go before younger one

– Happens naturally in single-/multi-cycle designs
– But not in a pipeline

Hazard: dependence & possibility of wrong insn order
• Effects of wrong insn order cannot be externally visible
• Hazards are a bad thing: most solutions either complicate

the hardware or reduce performance

40

Data Hazards
• register file (RF) reads occur in stage 2 (ID)
• RF writes occur in stage 5 (WB)
• RF written in ½ half, read in second ½ half of cycle
• Processor is built exactly as we’ve seen up until this

slide.

x10: add r3 ß r1, r2
x14: sub r5 ß r3, r4

1. Is there a dependence?
2. Is there a hazard?

41

A) Yes
B) No
C) Cannot tell with the

information given.

Which of the following statements is true?

A. Whether there is a data dependence between two
instructions depends on the machine the program is
running on.
B. Whether there is a data hazard between two
instructions depends on the machine the program is
running on.
C. Both A & B
D. Neither A nor B

42

43

IF ID MEM

IF ID MEM WB

IF ID MEM WB

IF ID MEM WB

IF ID MEM WB

Clock cycle
1 2 3 4 5 6 7 8 9

sub r5, r3, r4

lw r6, 4(r3)

or r5, r3, r5

sw r6, 12(r3)

add r3, r1, r2

time

WBX

X

X

X

X

44

IF ID MEM

IF ID MEM WB

IF ID MEM WB

IF ID MEM WB

IF ID MEM WB

Clock cycle
1 2 3 4 5 6 7 8 9

sub r5, r3, r4

lw r6, 4(r3)

or r5, r3, r5

sw r6, 12(r3)

add r3, r1, r2

time

WBX

X

X

X

X

backwards arrows require time travel

45

IF ID MEM

IF ID MEM WB

IF ID MEM WB

IF ID MEM WB

IF ID MEM WB

Clock cycle
1 2 3 4 5 6 7 8 9

sub r5, r3, r4

lw r6, 4(r3)

or r5, r3, r5

sw r6, 12(r3)

add r3, r1, r2

time

WBX

X

X

X

X

46

IF ID MEM

IF ID MEM WB

IF ID MEM WB

IF ID MEM WB

IF ID MEM WB

Clock cycle
1 2 3 4 5 6 7 8 9

sub r5, r3, r4

lw r6, 4(r3)

or r5, r3, r5

sw r6, 12(r3)

add r3, r1, r2

time

WBX

X

X

X

X

IF/ID

+4

ID/EX EX/MEM MEM/WB

mem

din dout

addrin
st

PC
+4

O
P

B
A

Rt

B
D

M
D

PC
+4

im
m

O
P

Rd

O
P

Rd

PC

inst
mem

Rd

Ra Rb

D
B

A

Rd

Detecting Data Hazards

IF/ID.Ra ≠ 0
?

47

Ra ==
? Ra ==

?

add r3, r1, r2sub r5,r3,r4

Problem = (IF/ID.Ra != 0 && (IF/ID.Ra == ID/EX.Rd
|| IF/ID.Ra == EX/M.Rd)) repeat for Rb

1. Do Nothing
• Change the ISA to match implementation

• “Hey compiler: don’t create code w/data hazards!”

(We can do better than this)
2. Stall
• Pause current and subsequent instructions till safe

3. Forward/bypass
• Forward data value to where it is needed

(Only works if value actually exists already)

48

How to stall an instruction in ID stage
• prevent IF/ID pipeline register update

– stalls the ID stage instruction
• convert ID stage insn into nop for later stages

– innocuous “bubble” passes through pipeline
• prevent PC update

– stalls the next (IF stage) instruction

49

IF/ID

+4

ID/EX EX/MEM MEM/WB

mem

din dout

addr

PC

inst
mem

Rd

Ra Rb

D
B

A

50

Rd

add r3, r1, r2
sub r5, r3, r5
or r6, r3, r4
add r6, r3, r8

in
st

PC
+4

OP
B

A
Rt

B
D

M
D

PC
+4

im
m

OP
Rd

OP
Rd

If hazard:

WE=0
MemWr=0
RegWr=0

detect
hazard

51

data
mem

B

A

B

D

M

D
inst

mem

D
rD B

A

Rd RdRd

W
E

W
E

O
p

W
E

O
p

rA rB

PC

+4

O
pnop

in
st

/stall

add r3,r1,r2

(MemWr=0
RegWr=0)

NOP = If(IF/ID.rA ≠ 0 &&
(IF/ID.rA==ID/Ex.Rd
IF/ID.rA==Ex/M.Rd))

sub r5,r3,r5

or r6,r3,r4 (WE=0)

STALL CONDITION MET

52

data

mem

B

A

B

D

M

D
inst

mem

D

rD B

A

R
d

R
dR
d

W
E

W
E

O
p

W
E

O
p

rA rB

PC

+4

O
pnop

in
s
t

/stall

nop

(MemWr=0

RegWr=0)

NOP = If(IF/ID.rA ≠ 0 &&

(IF/ID.rA==ID/Ex.Rd

IF/ID.rA==Ex/M.Rd))

add r3,r1,r2sub r5,r3,r5

(MemWr=0

RegWr=0)

or r6,r3,r4 (WE=0)

STALL CONDITION MET

53

data
mem

B

A

B

D

M

D
inst

mem

D
rD B

A

Rd RdRd

W
E

W
E

O
p

W
E

O
p

rA rB

PC

+4

O
pnop

in
st

/stall

nop

NOP = If(IF/ID.rA ≠ 0 &&
(IF/ID.rA==ID/Ex.Rd
IF/ID.rA==Ex/M.Rd))

add r3,r1,r2sub r5,r3,r5

(MemWr=0
RegWr=0)

or r6,r3,r4 (WE=1)
NO STALL CONDITION MET:
sub allowed to leave decode stage

nop

54

Clock cycle
1 2 3 4 5 6 7 8

add r3, r1, r2

sub r5, r3, r5

or r6, r3, r4

add r6, r3, r8

time

55

Clock cycle
1 2 3 4 5 6 7 8

add r3, r1, r2

sub r5, r3, r5

or r6, r3, r4

add r6, r3, r8

r3 = 10

r3 = 20

time

IF ID Ex M W

IF ID* Ex M W

IF* ID Ex M

ID* ID

IF* IF

IF ID Ex

2 Stall Cycles

1. Do Nothing
• Change the ISA to match implementation
• “Compiler: don’t create code with data hazards!”

(Nice try, we can do better than this)
2. Stall
• Pause current and subsequent instructions till safe

3. Forward/bypass
• Forward data value to where it is needed

(Only works if value actually exists already)

56

57

add r3, r1, r2

sub r5, r3, r1

data
mem

inst
mem

D
B

A

IF ID Ex M W

IF ID Ex M W

add r3, r1, r2sub r5, r3, r1

Problem: EX needs ALU result that is in MEM stage
Solution: add a bypass from EX/MEM.D to start of EX

Ex/Mem

58

data
mem

inst
mem

D
B

A

Detection Logic in Ex Stage:
forward = (Ex/M.WE && EX/M.Rd != 0 &&

ID/Ex.Ra == Ex/M.Rd)
|| (same for Rb)

add r3, r1, r2sub r5, r3, r1

Ex/Mem

59

add r3, r1, r2

sub r5, r3, r1

or r6, r3, r4

data
mem

inst
mem

D
B

A

IF ID Ex M W

IF ID
IF W

Ex M W
ID Ex M

Problem: EX needs value being written by WB

Solution: Add bypass from WB final value to start of EX

Mem/WB

add r3, r1,r2sub r5, r3, r1or r6, r3, r4

60

data

mem

inst

mem

D

B

A

Detection Logic:

forward = (M/WB.WE && M/WB.Rd != 0 &&

ID/Ex.Ra == M/WB.Rd &&

not (Ex/M.WE && Ex/M.Rd != 0 &&

ID/Ex.Ra == Ex/M.Rd)

|| (same for Rb)

Mem/WB

add r3, r1,r2sub r5, r3, r1or r6, r3, r4

61

data
mem

im
m

B

A

B

D

M

D
inst

mem

D
B

A

Rd Rd

Rb

W
E

W
E

M
C

Ra

M
C

forward
unit

detect
hazard

Two types of forwarding/bypass
• Forwarding from Ex/Mem registers to Ex stage (M®Ex)
• Forwarding from Mem/WB register to Ex stage (W ® Ex)

IF/ID ID/Ex Ex/Mem Mem/WB

62

Clock cycle
1 2 3 4 5 6 7 8

add r3, r1, r2

sub r5, r3, r4

lw r6, 4(r3)

or r5, r3, r5

sw r6, 12(r3)

time

63

Clock cycle
1 2 3 4 5 6 7 8

add r3, r1, r2

sub r5, r3, r4

lw r6, 4(r3)

or r5, r3, r5

sw r6, 12(r3)

IF ID Ex M W

IF ID

IF W

Ex M W

ID Ex M

IF ID Ex

time

M W

IF ID Ex M W

Data dependency after a load instruction:
• Value not available until after the M stage
àNext instruction cannot proceed if dependent

THE KILLER HAZARD
64

data
mem

inst
mem

D
B

A

lw r4, 20(r8)or r6, r3, r4

65

lw r4, 20(r8)

or r6, r3, r4

data
mem

inst
mem

D
B

A

lw r4, 20(r8)or r6,r4,r1

66

lw r4, 20(r8)

or r6, r3, r4

data
mem

inst
mem

D
B

A

IF ID Ex

IF ID

lw r4, 20(r8)or r6,r4,r1

67

data
mem

inst
mem

D
B

A

NOPor r6,r4,r1 lw r4, 20(r8)

lw r4, 20(r8)

or r6, r3, r4

IF ID Ex M W

IF ID* Ex M WID
Stall

68

data
mem

inst
mem

D
B

A

NOPor r6,r4,r1 lw r4, 20(r8)

Ex

lw r4, 20(r8)

or r6, r3, r4

IF ID Ex M W

IF ID* Ex M WID
Stall

69

data
memim

m
B

A

B

D

M

D
inst

mem

D
B

A

Rd Rd

Rb

W
E

W
E

M
CRa

M
C

forward
unit

detect
hazard

IF/ID ID/Ex Ex/Mem Mem/WB

Stall = If(ID/Ex.MemRead &&
IF/ID.Ra == ID/Ex.Rd

Rd
M

C

Most frequent 3410 non-solution to load-use hazards
Why is this “solution” so so so so so so awful? 70

data
memim

m
B

A

B

D

M

D
inst

mem

D
B

A

Rd Rd

Rb

W
E

W
E

M
CRa

M
C

forward
unit

detect
hazard

IF/ID ID/Ex Ex/Mem Mem/WB

Rd
M

C

Forwarding values directly from Memory to the
Execute stage without storing them in a register
first:

A. Does not remove the need to stall.
B. Adds one too many possible inputs to the ALU.
C. Will cause the pipeline register to have the

wrong value.
D. Halves the frequency of the processor.
E. Both A & D

71

Two MIPS Solutions:
• MIPS 2000/3000: delay slot

– ISA says results of loads are not available until one
cycle later

– Assembler inserts nop, or reorders to fill delay slot

• MIPS 4000 onwards: stall
– But really, programmer/compiler reorders to avoid

stalling in the load delay slot

72

5-stage Pipeline
• Implementation
• Working Example

73

Hazards
• Structural
• Data Hazards
• Control Hazards

74

for (i = 0; i < max; i++) {
n += 2;

}
i = 7;
n--;

r1: i
r2: n
r3: max

x10 addi r1, r0, 0 # i=0
x14 Loop: addi r2, r2, 2 # n += 2
x18 addi r1, r1, 1 # i++
x1C blt r1, r3, Loop # i<max?
x20 addi r1, r0, 7 # i = 7
x24 subi r2, r2, 1 # n--

Simplification: assume max > 0

Control Hazards
• instructions are fetched in stage 1 (IF)
• branch and jump decisions occur in stage 3 (EX)
à next PC not known until 2 cycles after branch/jump

x1C blt r1, r3, Loop
x20 addi r1, r0, 7

x24 subi r2, r2, 1

75

Branch not taken?
No Problem!

Branch taken?
Just fetched 2 addi’s
à Zap & Flush

76

1C blt r1,r3,L
20 addi r1,r0,7
24 subi r2,r2,1

data
mem

inst
mem D

B

A

PC

+4

NOP

IF ID Ex M W

IF ID NOP NOP
NOPIF NOP NOP NOP

branch
calc

decide
branch

IF ID Ex M W

If branch Taken®Zap

• prevent PC update
• clear IF/ID latch
• branch continues

New PC = 14

14 L:addi r2,r2,2

77

1C blt r1,r3,L
20 addi r1,r0,7
24 subi r2,r2,1

data
mem

inst
mem D

B

A

PC

+4

NOP
IF ID Ex M W

IF ID NOP NOP
NOPIF NOP NOP NOP

branch
calc

decide
branch

IF ID Ex M W

If branch Taken®Zap

• prevent PC update
• clear IF/ID latch
• branch continues

New PC = 1C

14 L:addi r2,r2,2

For every taken branch? OUCH!!!

Back of the envelope calculation
• Branch: 20%, load: 20%, store: 10%, other: 50%

• Say, 75% of branches are taken

CPI = 1 + 20% * 75% * 2 =
1 + 0.20 * 0.75 * 2 = 1.3

– Branches cause 30% slowdown
– Even worse with deeper pipelines

How do we reduce slowdown?

78

1. Delay Slot
• MIPS ISA: 1 insn after ctrl insn always executed
• Whether branch taken or not

• Your MIPS assembly should do this

2. Resolve Branch at Decode
• Move branch calc from EX to ID

• Alternative: just zap 2nd instruction when branch taken

3. Branch Prediction
• Not in 3410, but every processor worth anything does this

79

80

for (i = 0; i < max; i++) {
n += 2;

}
i = 7;
n--;
x10 addi r1, r0, 0 # i=0
x14 Loop: addi r2, r2, 2 # n x+= 2
x18 addi r1, r1, 1 # i++
x1C blt r1, r3, Loop # i<max?
x20 nop
x24 addi r1, r0, 7 # i = 7
x28 subi r2, r2, 1 # n++

i à r1
Assume:
n à r2
max à r3

data
mem

inst
mem D

B

A

PC

+4

branch
calc

decide
branchNew PC = 1C

1C blt r1, r3, Loop F D X

20 nop F D

24 addi r1, r0, 7 F

Zap!

A delay slot complicates the design of a processor.

A. True
B. False
C. Cannot tell from the information given
D. I don’t know
E. I think E is an awesome answer.

82

83

data
mem

inst
mem D

B

A

PC

+4

New PC = 1C

branch
calc

decide
branch

1C blt r1, r3, Loop F D X

20 nop F D

14 Loop:addi r2,r2,2 F

No Zapping!

Back of the envelope calculation

• Branch: 20%, load: 20%, store: 10%, other: 50%

• Say, 75% of branches are taken

What is the CPI with resolution @ decode?

CPI = 1 + 20% * 75% * 1 =

1 + 0.20 * 0.75 * 1 = 1.15

– 30% slowdown à 15% slowdown

84

Resolving branches at decode could slow down the
clock frequency of the processor.

A. True
B. False
C. Cannot tell from the information given
D. I don’t know
E. I think E is an awesome answer.

85

Because MIPS has a delay slot, the instruction after
any control instruction must always be a nop.

A. True
B. False
C. Cannot tell from the information given
D. I don’t know
E. I think E is an awesome answer.

86

87

x10 addi r1, r0, 0 # i=0
x14 Loop: addi r2, r2, 2 # n += 2
x18 addi r1, r1, 1 # i++
x1C blt r1, r3, Loop # i<max?
x20 nop

x10 addi r1, r0, 0 # i=0
x14 Loop: addi r1, r1, 1 # i++
x18 blt r1, r3, Loop # i<max?
x1C addi r2, r2, 2 # n += 2

Compiler transforms code

88

data
mem

inst
mem D

B

A

PC

+4

New PC = 1C

branch
calc

decide
branch

1C blt r1, r3, Loop F D X

20 addi r2,r2,2 F D

14 Loop:addi r1,r1,1 F

No Nop or Zapping!

Most processor support Speculative Execution
• Guess direction of the branch

– Allow instructions to move through pipeline
– Zap them later if guess turns out to be wrong

• A must for long pipelines

89

Parameters
• Branch: 20%, load: 20%, store: 10%, other: 50%

• 75% of branches are taken

Dynamic branch prediction
• Branches predicted with 95% accuracy

What is the CPI with resolution @ decode?
• CPI = 1 + 20% * 5% * 2 = 1.02

90

Data hazards occur when a operand (register) depends on the result
of a previous instruction that may not be computed yet. Pipelined
processors need to detect data hazards.

Stalling, preventing a dependent instruction from advancing, is one
way to resolve data hazards. Stalling introduces NOPs (“bubbles”)
into a pipeline. Introduce NOPs by (1) preventing the PC from
updating, (2) preventing writes to IF/ID registers from changing, and
(3) preventing writes to memory and register file. Nops significantly
decrease performance.

Forwarding bypasses some pipelined stages forwarding a result to a
dependent instruction operand (register). Better performance than
stalling.

91

Control hazards occur because the PC following a control
instruction is not known until control instruction is executed.

If branch is taken à need to zap instructions. 1 cycle

performance penalty.

Delay Slots can potentially increase performance due to
control hazards. The instruction in the delay slot will always
be executed. Requires software (compiler) to make use of
delay slot. Put nop in delay slot if not able to put useful

instruction in delay slot.

We can reduce cost of a control hazard by moving branch

decision and calculation from Ex stage to ID stage. With a

delay slot, this removes the need to flush instructions on
taken branches.

92

