Pipelining

Anne Bracy
CS 3410
Computer Science
Cornell University

[K. Bala, A. Bracy, S. McKee, E. Sirer, H. Weatherspoon]

Single-Cycle MIPS Datapath

control

< Fetch > Decode - Execute >€ Memorv> < WB

>

A Single cycle processor — this diagram is not 100% spatial

Clicker Question

control

Which instruction is more likely to
determine the speed of the clock?

A. Jump Register
B. Add
C. Store
D. Load
E. Either Load or Store

Five Stages of MIPS datapath

Basic CPU execution loop
1. Instruction Fetch

. Instruction Decode
. Execution (ALU)
. Memory Access

. Register Writeback

Single Cycle = Pipelining

Single-cycle
[insn0. F, D, X, M, W

insn1. F, D, X, M, W

Pipelined
I insn0.F insn0.D insn0.X insn0.M insn0.W
insnl.F insnl.D insn1.X insn1.M insn1.W I

5-stage Pipeline
* Implementation

 Working Example

Hazards
a3 e Structural

, e Data Hazards

! g e Control Hazards

1 Q)

Pipelined Processor

N

register > Al

/

file

addr
din dout

control

memory

compute

c jump/branch
\—> extend targets

Instruction Instruction Write-
Fetch Decode Execute Memory Back

IF/ID EX/MEM MEM/WB

Time Graphs

3 4 5 6

EX | [MEM| [WB

ID (|| EX

IF || ID

IF

|

Latency: 5 cycles
Throughput: 1 insn/cycle

Principles of Pipelined Implementation

 Break datapath into multiple cycles (here 5)

* Parallel execution increases throughput
* Balanced pipeline very important

Slowest stage determines clock rate

Imbalance kills performance
 Add pipeline registers (flip-flops) for isolation
* Each stage begins by reading values from latch

* Each stage ends by writing values to latch

e Resolve hazards

Stage
Fetch

Decode

Execute

Memory

Writeback

Pipeline Stages

Perform
Functionality

Use PC to index Program Memory,
increment PC

Decode instruction, generate
control signals, read register file

Perform ALU operation
Compute targets (PC+4+offset,
etc.) in case this is a branch,
decide if branch taken

Perform load/store if needed,
address is ALU result

Select value, write to register file

Latch values of interest

Instruction bits (to be decoded)
PC + 4 (to compute branch targets)

Control information, Rd index,
immediates, offsets, register values (Ra,
Rb), PC+4 (to compute branch targets)

Control information, Rd index, etc.
Result of ALU operation, value in case
this is a store instruction

Control information, Rd index, etc.
Result of load, pass result from execute

Instruction Fetch (single-cycle)

Reg.
File

555

control

< Fetch o Decode s Execute > Memorv> < WB

>

 Fetch 32-bit instruction from memory
* IncrementPC=PC+4

Instruction Fetch (pipelined)

instruction
memory

addr mc

00 = read word

Rest of pipeline

\

*PC+4

* pc-reg (PC registers: JR)

* pc-rel (PC-relative: BEQ, BNE)
 pc-abs (PC absolute: J and JAL)

Instruction Decode (single-cycle)

—

Reg.
File

555

control

< Fetch >€ Memorv> < WB

>
* Gather data from the instruction
* Read opcode; determine instruction type, field lengths
* Read in data from register file
(0, 1, or 2 reads for jump, addi, or add, respectively)

13

DECOde (pi pe"ned) result

register
file B

Ra Rb

T’ decode

Rest of pipeline

-
O
)
Q
L
C
.9
]
o
>
| -
i)
%)
-
\.—i
Q
o] 0]
(4°)
)
V)

PC+4|[imm

ctrl

Execution (single-cycle)

Reg.
File

555

control

WB

Decode Execute 5 < Memorv> < >

< Fetch > < > <

» Useful work done here (+, -, *, /), shift, logic operation,

comparison (slt)
* Load/Store? lw $t2, 32(St3) = Compute address

Execute (pipelined) o

pc-reg —branch?

Rest of pipeline

Q
O
O
o
Q
)]
C
9
]
o
>
| -
i)
%)
=
~N
Q
o] 0]
(4°)
)
V)

Memory access (single-cycle)

Reg.
File

555

control

< Fetch > < > I\/Iemorv> <

* Used by load and store instructions only
e Other instructions will skip this stage

pc-sel

pC-reg

branch?

MEM (pipelined)

Q
s
>
o
)
x
L
o
Q
o] 0]
4°)
)
V)

EX/MEM

din

dOUt

memory

MC

Rest of pipeline

Writeback (single-cycle)

control

Fetch Decode Memorv>< WB

<€ > € > € > € >

* Write to register file
— For arithmetic ops, logic, shift, etc, load. What about stores?

* Update PC

— For branches, jumps

WB (pipelined)

>
(-
@)
&
Q
=
<t
Q
o]0
(4°)
i’
p)

Putting it all together!

A

Rd
D

ID/EX EX/MEM MEM/WB

iClicker Question

Consider a non-pipelined processor with clock
period C (e.g., 50 ns). If you divide the processor

into N stages (e.g., 5) , your new clock period will
be:

A. C

B. N

C. less than C/N

D. C/N

E. greater than C/N

MIPS is designed for pipelining

* |nstructions same length
* 32 bits, easy to fetch and then decode

e 3types of instruction formats

* Easy to route bits between stages

* Can read a register source before even knowing
what the instruction is

e Memory access through lw and sw only
* Access memory after ALU

5-stage Pipeline

* Implementation

Hazards
e Structural

, e Data Hazards

! g e Control Hazards

Example: : Sample Code (Simple)

r3 < rl, r2
re < r4, rb5
r4 & 20(r2)
r5 €< r2, rb5
r7 =2 12(r3)

Assume 8-register machine

Example: Start State @ Cycle O

0
36
9
12
18

7 0
a1
22

o I
extend 0

Initial Bits 11-15 0
State Bits 16-20 0 0 0

Bits 26-31

Register file

nop nop nop

Time:0 |F/ID ID/EX EX/MEM MEM/WB

26

Cycle 1: Fetch add

add312

0
36
9
12
18
7
41
22

iextend‘
Bits 11-15

Bits 16-20 0 0

Z T € ppe

Register file

Bits 26-31

nop nop

rime:1 |F/ID EX/MEM MEM/WB

7

Cycle 2: Fetch nand, Decode add

nand 645 add312

0
36
9
12
18
7
41
22

iextend‘
Bits 11-15

Bits 16-20 0 0

S v 9 pueu

Register file

o)
N

Bits 26-31

nop nop

Time:2 |F/ID ID/EX EX/MEM MEM/WB

8

Cycle 3: Fetch lw, Decode nand, ...

Iw 4 20(2) nand 645 add 312

0
36
9
12
18
7
41
22

iextend‘
Fetch:

lw 4 20(2) Bits 16-20 0
Bits 26-31

(2)oz ¥ M

Register file

o)
N

nop

ID/EX EX/MEM MEM/WB

9

Cycle 4: Fetch add, Decode lw, ...

add525 Iw 4 20(2) nand 645 add312

nand

18 =01 0010
/=00 0111

0 -3=11 1101
36

9 18
12

18)
7

41
22

-
extend

0
4

Register file

Bits 11-15

6

Bits 26-31

lw nand

Time:4___|F/ID ID/EX EX/MEM MEM/WB

0

Cycle 5: Fetch sw, Decode add, ...

sw 7 12(3) add525 Iw 4 20 (2) nand 645 add 312

0
36
9
45
18
7
41
22

iextend‘ 18
Fetch:

sw7 12(3) Bits 16-20 4 6
Bits 26-31

(€)eT £ Mms

Register file

e

lw nand

Time:5 ___|F/ID ID/EX EX/MEM MEM/WB

1

Cycle 6: Decode sw, ...

sw 7 12(3) add 525 Iw 4 20(2) nand 645

0
36

9

18

7 22
3

22

- e 1
extend

No more Bits 11-15 0
instructions 7
Bits 26-31

Register file

SW

Time:6 ___|F/ID ID/EX EX/MEM MEM/WB

2

Cycle 7: Execute sw, ...

nop sw 7 12(3) add 525 lw 4 20(2)

0
36
9
45
99
7
-3
22

-> iextend‘ 22

No more Bits 11-15
instructions Bits 16-20 7
Bits 26-31

Register file

SW

Time:7___|F/ID ID/EX EX/MEM MEM/WB

33

Cycle 8: Memory sw, ...

nop nop sw 7 12(3)

0
36
9
45
99
16
-3
22

extend
- frend

No more Bits 11-15
instructions Bits 16-20 7
Bits 26-31

Register file

SW

Time:8___|F/ID ID/EX EX/MEM MEM/WB

4

Gdﬁhd—l Sally McKee

Cycle 9: Writeback sw, ...

nop nop nop

0
36
9
45
99
16
-3
22

iextend‘

Register file

e

No more Bits 11-15
instructions Bits 16-20
Bits 21-23

Time:9 __|F/ID ID/EX EX/MEM MEM/WB

)

iClicker Question

Pipelining is great because:

. You can fetch and decode the same instruction
at the same time.

. You can fetch two instructions at the same time.

. You can fetch one instruction while decoding
another.

. Instructions only need to visit the pipeline
stages that they require.

E. CandD

5-stage Pipeline
* Implementation

 Working Example

Hazards
a3 e Structural

) e Data Hazards

! g e Control Hazards

1 Q)

Hazards

Correctness problems associated w/processor design

1. Structural hazards

Same resource needed for different purposes at the
same time (Possible: ALU, Register File, Memory)

2. Data hazards
Instruction output needed before it’s available

3. Control hazards
Next instruction PC unknown at time of Fetch

Resolving Register File Structural Hazard

/
add r6, r5, r4 add r3, r2,r1

>
addr3,r2, rl M W

L=

nop
nop

add r6, r5, rd

Ex M W

1D
|

Problem: Need to read from and write to Register File at the same time
Solution: negate RF clock: write first half, read second half

Dependences and Hazards

Dependence: relationship between two insns
e Data: two insns use same storage location
* Control: 1 insn affects whether another executes at all
* Not a bad thing, programs would be boring otherwise

* Enforced by making older insn go before younger one
— Happens naturally in single-/multi-cycle designs

— But not in a pipeline

Hazard: dependence & possibility of wrong insn order
 Effects of wrong insn order cannot be externally visible

* Hazards are a bad thing: most solutions either complicate
the hardware or reduce performance

iClicker Question

Data Hazards
* register file (RF) reads occur in stage 2 (ID)
RF writes occur in stage 5 (WB)
RF written in %2 half, read in second % half of cycle

Processor is built exactly as we’ve seen up until this
slide.

x10: add r3 < rl1, r2
x14: sub r5 < r3, r4

A) Yes

B) No

C) Cannot tell with the
information given,

1. Is there a dependence?
2. Is there a hazard?

iClicker Follow-up

Which of the following statements is true?

A. Whether there is a data dependence between two
instructions depends on the machine the program is
running on.

B. Whether there is a data hazard between two

instructions depends on the machine the program is
running on.

C.Both A&B
D. Neither A nor B

Where are the Data Hazards?
Clock cycle

1 2 3 4 5 6 7 8

add r3,r1,r2| | IF ‘l'[ID :®*MEM|—WB

>

subr5, r3, r4 IF ‘l-[ID *vmvi—

lw r6, 4(r3)

orr5,r3,r5

sw r6, 12(r3)

\

Visualizing Data Hazards (1)
Clock cycle

1 2 3

add ,r1,r2| | IF ‘l'[ID

sub r5, ., 4 IF ‘l-[

lwr6, 4()

orr5,r3, r5

sw r6, 12(r3)

\

Visualizing Data Hazards (2)
Clock cycle

1 2 3 4 5 6 7 8 9

add r3,r1,r2| | IF ‘l'[ID :®*MEM|—WB
sub ,r3,r4 IF ‘l-[ID :&’M_WB

>

lw r6, 4(r3) . ID :97%,,5“4_
orrs,r3, I] IF H.E ID :8

sw r6, 12(r3) IF ‘|.E D
v

Visualizing Data Hazards (3)
Clock cycle

1 2 3 4 5 6 7 8 9

add r3,r1,r2| | IF ‘l'[ID :®*MEM|—WB

>

subr5, r3, r4 IF ‘l-[ID *vmvi—

lw , 4(r3)

orr5,r3,r5

sw ,12(r3)

\

Detecting Data Hazards

<

IF/ID.Ra #0
?

Ra ==
?

sub r5,r3,r4

IF/ID

q
+
O
o
——

=)

ID/EX

addr3. r1,r2| O

| — |

__< O)
Ra?—— o

ol

EX/MEM

Problem = (IF/ID.Ra != 0 && (IF/ID.Ra == ID/EX.Rd
|| IF/ID.Ra == EX/M.Rd))

Possible Responses to Data Hazards

1. Do Nothing
* Change the ISA to match implementation
!”

* “Hey compiler: don’t create code w/data hazards
(We can do better than this)

2. Stall
e Pause current and subsequent instructions till safe

3. Forward/bypass
 Forward data value to where it is needed

(Only works if value actually exists already)

Stalling

How to stall an instruction in ID stage
» prevent IF/ID pipeline register update
— stalls the ID stage instruction

* convert ID stage insn into nop for later stages

— innocuous “bubble” passes through pipeline

* prevent PC update

— stalls the next (IF stage) instruction

Control Signals for a Stall

— <

addr3,rl, r2 Rd A
sub r5, r3, r5 D
orrb6,r3,r4
add r6, r3, r8

detect
hazard

Rt|Rd||PC+4

OP

ID/EX EX/MEM MEM/WB

Detecting the Hazard

—1 A

>

sub r5,r3,r5 add r3,r1,r2

or r6,r3,r4 (WE=0)

/stall
NOP = If(IF/ID.rA # 0 &&

(IF/ID.rA==ID/Ex.Rd <= STALL CONDITION MET
IF/ID.rA==Ex/M.Rd))

First Stall Cycle (nop in X)

—1 A

>

sub r5,r3,r5 add r3,r1,r2

or r6,r3,r4 (WE=0)

/stall
NOP = If(IF/ID.rA # 0 &&

(IF/ID.rA==ID/Ex.Rd
IF/ID.rA==Ex/M.Rd)) €= STALL CONDITION MET 52

Second Stall Cycle (nop in X, MEM)

AIA

>

nop D

sub r5,r3,r5 nop

add r3,r1,r2

or r6,r3,r4 (WE=1)
/stall NO STALL CONDITION MET:
NOP = If(IF/ID.rA # 0 && sub allowed to leave decode stage

(IF/ID.rA==1D/Ex.Rd

Clock cycle Sta I I I ng

2 3 4

add r3, rl, r2

sub r5, r3, r5

orre, r3, r4

add r6, r3, r8

Clock cycle Sta I I I ng

2 3 4

add r3, rl, r2

r3 =20
2 Stall Cycles

sub r5, r3, r5 Ex M| W

orr6, r3, rd ID | Ex | M

add r6, r3, r8 |F 1D

Possible Responses to Data Hazards

1. Do Nothing
* Change the ISA to match implementation
!H

 “Compiler: don’t create code with data hazards
(Nice try, we can do better than this)

2. Stall
* Pause current and subsequent instructions till safe

3. Forward/bypass
 Forward data value to where it is needed

(Only works if value actually exists already)

Forwarding Datapath 1: MEM - EX

} data
—> —>|
N mem

subr5, r3,rl add r3, r1, r2

add r3,r1, r2 IM W

subr5,r3, rl

Ex M W

v

Problem: EX needs ALU result that is in MEM stage
Solution: add a bypass from EX/MEM.D to start of EX

Forwarding Datapath 1: MEM - EX

} data
—> —>|
N mem

subr5, r3, rl add r3, rl, r2

Detection Logic in Ex Stage:
forward = (Ex/M.WE && EX/M.Rd != 0 &&
ID/Ex.Ra == Ex/M.Rd)
|| (same for Rb)

Forwarding Datapath 2: WB - EX

} data
—> —> >
> mem %

orr6, r3, rd sub r5, r3, rl add r3, r1,r2
>

add r3, r1, r2 M oW

sub r5, r3, rl Ex |M W

orr6, r3, rd YEx M | W

v
Problem: EX needs value being written by WB

Solution: Add bypass from WB final value to start of EX =

Forwarding Datapath 2: WB - EX

} data
—> —> >
> mem %

orr6, r3, rd sub r5, r3, rl add r3, r1,r2

Detection Logic:
forward = (M/WB.WE && M/WB.Rd !=0 &&
ID/Ex.Ra == M/WB.Rd &&
not (Ex/M.WE && Ex/M.Rd != 0 &&
ID/Ex.Ra == Ex/M.Rd)
|| (same for Rb)

Complete Forwarding Datapath

detect
hazard

IF/ID ID/Ex

Two types of forwarding/bypass

Forwarding Example 2

Clock cycle
1 2 3 4 5 6

add r3,rl, r2

subr5,r3,r4d

lw r6, 4(r3)

orr5,r3, r5

sw r6, 12(r3)

add r3,rl, r2

subr5,r3,r4d

lw r6, 4(r3)

orr5,r3, r5

sw r6, 12(r3)

Forwarding Example 2

Clock cycle
1 2 3 4 5 6

IF ID Ex M W

IF ID Ex M W

Load-Use Hazard Explained

l
data
} mem

orro, r3, lw r4, 20(r8)

Data dependency after a load instruction:
* Value not available until after the M stage
—Next instruction cannot proceed if dependent

Load-Use Stall

>

or r6,r4,rl lw r4, 20(r8)

lw r4, 20(r8)

orre, r3,r4

Load-Use Stall (1)

J

lw r4, 20(r8)

IF ID Ex

orre, r3{rd

Load-Use Stall (2)

l

data

—> —>
mem

lw r4, 20(r8)

Load-Use Stall (3)

%
>} /

orr6,r4,rl lw r4, 20
>

ID Ex M
Stall

Load-Use Detection

>

—>

detect
hazard

IF/ID I

B
&
£
o)
o
o
o
=
()
o
@)
g

9
\
m
x

Stall = If(ID/Ex.MemRead &&
IF/ID.Ra == ID/Ex.Rd

Incorrectly Resolving Load-Use Hazards

N

>

|

detect
hazard

IF/ID I

MCY Ra | Rb JRd)] fimm|] @

9
\
m
x

Mem/WB

Most frequent 3410 non-solution to load-use hazards
Why is this “solution” so so so so so so awful?

iClicker Question

Forwarding values directly from Memory to the

Execute stage without storing them in a register
first:

A. Does not remove the need to stall.

. Adds one too many possible inputs to the ALU.

. Will cause the pipeline register to have the
wrong value.

. Halves the frequency of the processor.
. BothA&D

Resolving Load-Use Hazards

Two MIPS Solutions:
* MIPS 2000/3000: delay slot

—|SA says results of loads are not available until one
cycle later

—Assembler inserts nop, or reorders to fill delay slot

e MIPS 4000 onwards: stall

— But really, programmer/compiler reorders to avoid
stalling in the load delay slot

5-stage Pipeline

* Implementation
 Working Example

Hazards
& e Structural

, e Data Hazards

A B>

A bit of Context

O; 1 < max; i++) {
2;

Control Hazards

Control Hazards
* instructions are fetched in stage 1 (IF)
* branch and jump decisions occur in stage 3 (EX)
- next PC not known until 2 cycles after branch/jump

blt rl, r3, Loop

Branch not taken?
addi rl, re, 7 No Problem!

subi r2, r2, 1 Branch taken?

Just fetched 2 addi’s
= Zap & Flush

* prevent PC update
Zap & FIUSh * clear IF/ID latch

* branch continues

P

/

C
A
New PC =14 SIS

blt r1,r3,L | IF Ex M W

addi rl1,re,7
subi r2,r2,1 |F
L:addi r2,r2,2 IF ID Ex M W

\4

If branch Taken—Zap

76

Zap & Flush

e prevent PC update
e clear IF/ID latch

decide
branc

* branch continues

/

If branch Taken—Zap

L:addi r2,r2,2

\4

M W

IF ID Ex M W

77

Branch Performance

Back of the envelope calculation
* Branch: 20%, load: 20%, store: 10%, other: 50%

* Say, 75% of branches are taken

CPI=1+20% *75% * 2 =
1+ =1.3

— Even worse with deeper pipelines

How do we reduce slowdown?

Reducing the cost of control hazard

1. Delay Slot
« MIPS ISA: 1 insn after ctrl insn always executed

e Whether branch taken or not

* Your MIPS assembly should do this
2. Resolve Branch at Decode

* Move branch calc from EX to ID
e Alternative: just zap 2"% instruction when branch taken

3. Branch Prediction

* Notin 3410, but every processor worth anything does this

Solution #1: Delay Slot

for (1 =0; 1 < max; i++) { o .7

n += 2; Assume:

n =2 r2
max =2 r3

1=0
n X+= 2
1++

H
H
H
H

Delay Slot in Action

New PC=1C

blt rl, r3, Loop
nop

addi ri. re, 7

J

iClicker Question

A delay slot complicates the design of a processor.

A. True

B. False

C. Cannot tell from the information given
D. I don’t know

E. |1think E is an awesome answer.

Soln #2: Resolve Branches @ Decode

decide®

ew Pd=1C {an¢

blt rl, r3, Loop

nop

Loop:addi r2,r2,2

Branch Performance

Back of the envelope calculation
* Branch: 20%, load: 20%, store: 10%, other: 50%

* Say, 75% of branches are taken

What is the CPI with resolution @ decode?

CPI=1+20% *75% * 1 =
1+ =1.15

iClicker Question

Resolving branches at decode could slow down the
clock frequency of the processor.

A. True

B. False

C. Cannot tell from the information given
D. I don’t know

E. |1think E is an awesome answer.

iClicker Question

Because MIPS has a delay slot, the instruction after
any control instruction must always be a nop.

A. True

B. False

C. Cannot tell from the information given
D. I don’t know

E. |1think E is an awesome answer.

Optimization: Fill the Delay Slot

X160 addi rl, ro, © # 1=0
x14 Loop: addi r2, r2, 2 # n += 2]

x18 addi rl, rl, 1 # 1i++
x1C blt rl, r3, Loop # 1i<max?

X20 nop

lCompiLer‘ transforms code

X160 addi rl, ro, © # 1=0
x14 Loop: addi rl, rl, 1 # 1i++
x18 blt rl, r3, Loop # 1i<max?
x1C addi r2, r2, 2 # n += 2

87

Optimization In Action!

N

r3, Loop

addi r2,r2,2

Loop:addi ri,rl,1

Branch Prediction

Most processor support Speculative Execution
* Guess direction of the branch

— Allow instructions to move through pipeline
— Zap them later if guess turns out to be wrong

* A must for long pipelines

Branch Prediction Performance

Parameters
* Branch: 20%, load: 20%, store: 10%, other: 50%

* 75% of branches are taken

Dynamic branch prediction

* Branches predicted with 95% accuracy

What is the CPI with resolution @ decode?
e CPI=1+20% *5% * 2 =

Data Hazard Takeaways

Data hazards occur when a operand (register) depends on the result
of a previous instruction that may not be computed yet. Pipelined
processors need to detect data hazards.

Stalling, preventing a dependent instruction from advancing, is one
way to resolve data hazards. Stalling introduces NOPs (“bubbles”)
into a pipeline. Introduce NOPs by (1) preventing the PC from

updating, (2) preventing writes to IF/ID registers from changing, and
(3) preventing writes to memory and register file. Nops significantly
decrease performance.

Forwarding bypasses some pipelined stages forwarding a result to a
dependent instruction operand (register). Better performance than
stalling.

Control Hazard Takeaways

Control hazards occur because the PC following a control
instruction is not known until control instruction is executed.
If branch is taken = need to zap instructions. 1 cycle

performance penalty.

Delay Slots can potentially increase performance due to
control hazards. The instruction in the delay slot will always

be executed. Requires software (compiler) to make use of
delay slot. Put nop in delay slot if not able to put useful
instruction in delay slot.

We can reduce cost of a control hazard by moving branch
decision and calculation from Ex stage to ID stage. With a
delay slot, this removes the need to flush instructions on

taken branches.

