State

CS 3410
Computer Science
Cornell University

[K. Bala, A. Bracy, E. Sirer, and H. Weatherspoon]

Stateful Components

 QOutput computed directly from inputs
e System has no internal state
* Nothing depends on the past!

> QOutputs

Inputs ~—> Combinational »
N circuit M

Need:

* torecord data

e to build stateful circuits
e a state-holding device

State Examples: Program Memory & PC

Prog | current A basic processor
instruction CPU

executes

* fetches

 decodes
* executes

one instruction at a time

Instructions live in Program Memory

PC = Program Counter, address of
soooonooetoooicocottoseeatototo | CUrent instruction

“Next Instruction Address” =PC+ 4

When should we update the PC?
As fast and as often as possible?

00100000000000100000000000001010

Clocks

Clock helps coordinate state changes
* Fixed period

* Frequency = 1/period

clock
high rising

falling edge
\\\\ -_Tiiff1]§;7[////

Edge Triggered State Changes

State changes at clock edge

positive edge-triggered

negative edge-triggered ‘

Need to design edge-triggered storage SEE

e Data captured when clock low

e OQutput changes only on rising edge
(could also design it to be negative edge-triggered)

Clock Methodology

Signals must be stable prior to rising edge

e Output changes only on rising edge
e Data captured when clock low

)
oV N

DFF| Smis _[DFF
combinational
circul

I |

tcombinational

<€ >

 get | compute set

State Examples: Program Memory & PC

current

instruction CPU
executes

|
X

x104

‘ADE>//

(a 32 bit encoding of a subtract instruction)

iClicker Question

current

instruction CPU
executes

If we wanted to make the clock faster,
what would we need to speed up?

(A) the +4 adder

(B) the time it takes to read Program Memory
(C) the time it takes to execute an instruction
(D) BorC

(E) A,B&C

Clocks
State

— Registers
—Memory

Goals for Today

Registers

D flip-flops in parallel
 shared clock

* Additional (optional) inputs:
writeEnable, reset, ...

Register File

Register File

* N read/write registers o

* Indexed by 32| Dw Single-Read-Port

register number Single-Write-Port
32 x32

Register File

Rw Rg

$$$

Writing to the Register File (1)

Register File CE: :

* N read/write registers

L Reg O

* Indexed by 510-32 = || e
register number decoder(: TLReg 30

LReg 31
——

addi , ro, 10

5T
Rw
How to write to one register in the register file?
* Need a decoder

Aside: 3-to-8 decoder truth table & circuit

N
=
=)

00|01 |02 |03|04 |05/0607

3-to-8
decoder| s

= | === O 0O O O
= = O 0O == O O
= O | = | O | = | O = O

Aside: 3-to-8 decoder truth table & circuit

N
;.
5.

0l|02|03/04 050607
3-to-8
decoder| s

= | === O 0O O O
= = O 0O == O O
= O | = | O | = | O = O

Writing to the Register File (2)

Register File CE: :

* N read/write registers 'EB
* Indexed by 5t0-32 T

register number decoder i~ Reg 30
LReg 31

addi , ro, 10 I

5
Rw W
How to write to one register in the register file?

* Need a decoder
* Write enable signal prevents unintended writes

Reading from the Register File
Register File 37

* N read/write registers

* Indexed by
register number

LReg 31|——

How to read from one register? Need:

(A) Encoder
(B) Decoder
(C) Or Gate
(D) Multiplexor

Reading from the Register File
Register File 37

* N read/write registers

* Indexed by
register number

LReg 31|——

How to read from one register?
* Need a multiplexor

Reading from the Register File
Register File 37

* N read/write registers

* Indexed by
register number

How to read from two registers?
* Need 2 multiplexors!

Complete Register File
Register File

* N read/write registers

* Indexed by 5t0-32
register number decoder

Implementation:

* D flip flops to store bits

* Decoder for each write port

* Mux for each read port

Register File

Register File

* N read/write registers
——>

* Indexed by 32| Pw Dual-Read-Port

register number

Implementation:

Single-Write-Port Q

32 x 32
Register File

RW RA B

Q,

B

* D flip flops to store bits
* Decoder for each write port
* Mux for each read port

$ fs g5 %s

MIPS Register file

32 x 32-bit registers
rO wired to zero

rl
N2

Write port indexed via Ry,

* on falling edge when WE=1 r31

Read ports indexed via Ry, Rg

WE Ry R, R,

Numbered from O to 31. $1 $5 $5 $5
Can be referred by number: SO, S1, S2, ... $31
Convention, each register also has a name:

* $16-523 > Ss0-Ss7, S8-S15-> St0-St7

iClicker Question

If we wanted to support 64
registers, what would

change?

(A) W,A,B 32 - 64

(B) R,R,,R, 526

(C) W32->64, R, 526
(D) A & B only

ro
rl

r3l

WE Ry R, R,

oot b ts

Tradeoffs)

\w

Register File tradeoffs

+ Very fast (a few gate delays for

both read and write)

+ Adding extra ports is
straightforward

— Doesn’t scale

e.g. 32Mb register file with

32 bit registers (1M registers) &

Need 32x 1M-to-1 multiplexor h
and 32x 20-to-1M decoder
How many logic gates/transistors?

Clocks
State

— Registers
—Memory

Goals for Today

Memory

Storage Cells + bus

Inputs: Address, Data (for writes)
Outputs: Data (for reads)

Also need R/W signal (not shown)

\

Address =——\x—>

N address bits =2 2N words total
* M data bits 2 each word M bits

Memory

Storage Cells + bus
Decoder selects a word line
determines access type
Word line is then coupled to the
note: w/ a tri-state buffer, not a huge mux!

4x2 Memory

Din[l] Dln[z]

E.g. How do we design
a4 x2 Memory Module?

(i.e. 4 word lines that are
each 2 bits wide)?

p)
Address \A—

Write Enable —

Output Enable —

4 x 2 Memory

E.g. How do we design
a 4 x 2 Memory Module?

F
enable enable

=Pl
(i.e. 4 word lines that are | |2-to-4 !

each 2 bits wide)? dec"dei el

p)
Address x—

Write Enable
Output Enable

Memory

Din[l] Dln[z]

E.g. How do we design [R |
a4 x 2 Memory Module? e enable

(i.e. 4 word lines that are | |2-to; G G _JW
each 2 bits wide)? enable “enable

Address A—

Word lines

enable

Write Enable
Output Enable

E.g. How do we design | L

a 4 x 2 Memory Module? L oble N eroplils
)

(i.e. 4 word lines that are | |2-to4

each 2 bits wide)? decode;

pi
Address A—-{ —

/ 2

“kenable

l

Write Enable
Output Enable

Dout[l] DQ)ut[z]

MIPS Memory

Din IDIOU'C
32

I>
32

>

memory

T3 b T

addr mc

32-bit address
32-bit data (but byte addressed)

Enable + 2 bit memory control (mc)
00: word (4 byte aligned)

01: write byte

10: write halfword (2 byte aligned)

11: write word (4 byte aligned)

1 byte

address

OXFFFFFFef

0x0000000b
0Xx0000000a
0Xx00000009
0Xx00000008
0Xx00000007
0XxX00000006
0XxX00000005
0x00000004
0Xx00000003
0Xx00000002
0Xx00000001

0Xx00000000
31

In past semesters we have covered the rest of this
lecture in the beginning of the Caches Lecture. So if
you have no recollection of covering this, it might
be because once again we didn’t.

©

SRAM Caell

Typical SRAM Cell

word line

Each cell stores one bjt, and requires 4 — 8 transistors (6 is typical)

Pass-Through
Transistors

SRAM Summary

SRAM
*A few transistors (~6) per cell
*Used for working memory (caches)

*But for even higher density...

Dynamic RAM: DRAM

Dynamic-RAM (DRAM)
* Data values require constant refresh

word line

Il

Capacitor

Each cell stores one bit, and requires 1 transistors

Dynamic RAM: DRAM

Dynamic-RAM (DRAM)
* Data values require constant refresh

word line

K—_Ix\ Pass-Through
: [Transistors
Capacitor v

Each cell stores one bit, and requires 1 transistors

DRAM vs. SRAM

Single transistor vs. many gates
* Denser, cheaper (S30/1GB vs. S30/2MB)
* But more complicated, and has analog sensing

Also needs refresh
* Read and write back...
* ...every few milliseconds
* Organized in 2D grid, so can do rows at a time
* Chip can do refresh internally

Hence... slower and energy inefficient

Memory

Register File tradeoffs
+ Very fast (a few gate delays for both read and write)
+ Adding extra ports is straightforward
— Expensive, doesn’t scale
— Volatile

Volatile Memory alternatives: SRAM, DRAM, ...

— Slower
+ Cheaper, and scales well
— Volatile

Non-Volatile Memory (NV-RAM): Flash, EEPROM, ...

+ Scales well
— Limited lifetime; degrades after 100000 to 1M writes

