
CS 3410
Computer Science
Cornell University

[K. Bala, A. Bracy, E. Sirer, and H. Weatherspoon]

Combinational logic
• Output computed directly from inputs
• System has no internal state
• Nothing depends on the past!

Need:
• to record data
• to build stateful circuits
• a state-holding device

2

Inputs Combinational
circuit

OutputsN M

PC

Prog
Mem

+4

Instructions live in Program Memory
PC = Program Counter, address of
current instruction
“Next Instruction Address” = PC + 4

3

00100000000000100000000000001010
00100000000000010000000000000000
00000000001000100001100000101010

current
instruction

A basic processor
• fetches
• decodes
• executes

one instruction at a time

CPU
executes

When should we update the PC?
As fast and as often as possible?

Clock helps coordinate state changes
• Fixed period
• Frequency = 1/period

4

1

0
clock
period

clock
high

clock
low

rising
edgefalling

edge

State changes at clock edge

5

positive edge-triggered

negative edge-triggered

Need to design edge-triggered storage
Positive edge-triggered D Flip-Flop:
• Data captured when clock low
• Output changes only on rising edge
(could also design it to be negative edge-triggered)

DFF

Signals must be stable prior to rising edge
Positive edge-triggered D Flip-Flop:
• Output changes only on rising edge
• Data captured when clock low

6

clk

compute set

tcombinational

get

DFF combinational
circuit

DFFinputs outputs

PC

Prog
Mem

+4

7

current
instruction CPU

executes

clkx
PC

x x104 x108x100

PC x100 x104

insn SUB XORADD

(a 32 bit encoding of a subtract instruction)

If we wanted to make the clock faster,
what would we need to speed up?

(A) the +4 adder
(B) the time it takes to read Program Memory
(C) the time it takes to execute an instruction
(D) B or C
(E) A, B & C

8

PC

Prog
Mem

+4

current
instruction CPU

executes

x
PC

Clocks
State
• Storing 1 bit
• Storing N bits:

– Registers
– Memory

9

• D flip-flops in parallel
• shared clock
• Additional (optional) inputs:

writeEnable, reset, …

10

clk

D0

D3

D1

D2

4 4
4-bit
reg

clk

DFF

DFF

DFF

DFF

Register File
• N read/write registers
• Indexed by

register number
Single-Read-Port

Single-Write-Port
32 x 32

Register File

QR
DW

RW RRW

32
32

1 5 5

11

Register File
• N read/write registers
• Indexed by

register number

addi r5, r0, 10

How to write to one register in the register file?
• Need a decoder

Reg 0

Reg 30
Reg 31

Reg 1
5-to-32
decoder

5
RW

D
32

….…
00101

12

i2 i1 i0 o0 o1 o2 o3 o4 o5 o6o7
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

3-to-8
decoder

3
RW

…

101

13

i2 i1 i0 o0 o1 o2 o3 o4 o5 o6o7
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

3-to-8
decoder

3
RW

…

101

i2
i1
i0

o0

i2
i1
i0

o5

14

Register File
• N read/write registers
• Indexed by

register number

addi r5, r0, 10

How to write to one register in the register file?
• Need a decoder
• Write enable signal prevents unintended writes

Reg 0

….
Reg 30
Reg 31

Reg 1
5-to-32
decoder

5
RW W

D
32

15

Register File
• N read/write registers
• Indexed by

register number

How to read from one register? Need:
(A) Encoder
(B) Decoder
(C) Or Gate
(D) Multiplexor

Reg 0
Reg 1
….

Reg 30
Reg 31

16

32

….

Register File
• N read/write registers
• Indexed by

register number

How to read from one register?
• Need a multiplexor

32
Reg 0
Reg 1
….

Reg 30
Reg 31

M
U
X

32
QA

5
RA

….

17

Register File
• N read/write registers
• Indexed by

register number

How to read from two registers?
• Need 2 multiplexors!

32
Reg 0
Reg 1
….

Reg 30
Reg 31

M
U
X

M
U
X

32
QA

32
QB

55
RB

RA

….

….

18

Register File
• N read/write registers
• Indexed by

register number

Implementation:
• D flip flops to store bits
• Decoder for each write port
• Mux for each read port

32
Reg 0
Reg 1
….

Reg 30
Reg 31

M
U
X

M
U
X

32
QA

32
QB

55
RB

RA

….

….

5-to-32
decoder

5
RWW

D
32

19

Register File
• N read/write registers
• Indexed by

register number

Implementation:
• D flip flops to store bits
• Decoder for each write port
• Mux for each read port

Dual-Read-Port
Single-Write-Port

32 x 32
Register File

QA

QB

DW

RW RA RBW

32

32

32

1 5 5 5

20

MIPS register file

• 32 x 32-bit registers

• r0 wired to zero

• Write port indexed via RW

• on falling edge when WE=1

• Read ports indexed via RA, RB

Registers

• Numbered from 0 to 31.

• Can be referred by number: $0, $1, $2, … $31

• Convention, each register also has a name:

• $16 - $23 à $s0 - $s7, $8 - $15 à $t0 - $t7

A

B

W

RW RA RBWE

32

32

32

1 5 5 5

r1
r2
…
r31

21

If we wanted to support 64
registers, what would
change?

(A) W,A,B 32 à 64
(B) Rw,Ra,Rb 5 à 6
(C) W 32à 64, Rw 5 à 6
(D) A & B only

22

A

B

W

RW RA RBWE

32

32

32

1 5 5 5

r0
r1
…
r31

Register File tradeoffs
+ Very fast (a few gate delays for

both read and write)
+ Adding extra ports is

straightforward
– Doesn’t scale

e.g. 32Mb register file with
32 bit registers (1M registers)
Need 32x 1M-to-1 multiplexor
and 32x 20-to-1M decoder
How many logic gates/transistors?

a

b

c

d

e

f

g

h

s2s1s0

8-to-1 mux

23

Clocks
State
• Storing 1 bit
• Storing N bits:

– Registers
– Memory

24

• Storage Cells + bus
• Inputs: Address, Data (for writes)
• Outputs: Data (for reads)
• Also need R/W signal (not shown)

• N address bits à 2N words total
• M data bits à each word M bits M

N
Address

Data
25

• Storage Cells + bus
• Decoder selects a word line
• R/W selector determines access type
• Word line is then coupled to the data lines

note: w/ a tri-state buffer, not a huge mux! data lines

Ad
dr

es
s

De
co

de
r

R/W

Dout[2]

E.g. How do we design
a 4 x 2 Memory Module?

(i.e. 4 word lines that are
each 2 bits wide)?

2-to-4
decoder

2
Address

D Q D Q

D Q D Q

D Q D Q

D Q D Q

Dout[1]

Din[1] Din[2]

enable enable

enable enable

enable enable

enable enable

0

1

2

3
Write Enable

Output Enable

4 x 2 Memory

2-to-4
decoder

2
Address

Dout[1] Dout[2]

Din[1] Din[2]

enable enable

enable enable

enable enable

enable enable

0

1

2

3
Write Enable

Output Enable

E.g. How do we design
a 4 x 2 Memory Module?

(i.e. 4 word lines that are
each 2 bits wide)?

2-to-4
decoder

2
Address

Dout[1] Dout[2]

Din[1] Din[2]

enable enable

enable enable

enable enable

enable enable

0

1

2

3
Write Enable

Output Enable

E.g. How do we design
a 4 x 2 Memory Module?

(i.e. 4 word lines that are
each 2 bits wide)?

Word lines

29

2-to-4
decoder

2
Address

Dout[1] Dout[2]

Din[1] Din[2]

enable enable

enable enable

enable enable

enable enable

0

1

2

3
Write Enable

Output Enable

E.g. How do we design
a 4 x 2 Memory Module?

(i.e. 4 word lines that are
each 2 bits wide)?

Bit lines

30

• 32-bit address
• 32-bit data (but byte addressed)
• Enable + 2 bit memory control (mc)

00: read word (4 byte aligned)
01: write byte
10: write halfword (2 byte aligned)
11: write word (4 byte aligned)

memory

32
addr

2
mc

32 32

E

Din Dout

0xffffffff
. . .
0x0000000b
0x0000000a
0x00000009
0x00000008
0x00000007
0x00000006
0x00000005
0x00000004
0x00000003
0x00000002
0x00000001
0x00000000

0x05

1 byte address

31

In past semesters we have covered the rest of this
lecture in the beginning of the Caches Lecture. So if
you have no recollection of covering this, it might
be because once again we didn’t.

J

32

Typical SRAM Cell

B!B

word linebi
t l

in
e

Each cell stores one bit, and requires 4 – 8 transistors (6 is typical)

Pass-Through
Transistors

33

SRAM
•A few transistors (~6) per cell
•Used for working memory (caches)

•But for even higher density…

34

Dynamic-RAM (DRAM)
• Data values require constant refresh

Gnd

word linebi
t l

in
e

Capacitor

Each cell stores one bit, and requires 1 transistors
35

Dynamic-RAM (DRAM)
• Data values require constant refresh

Gnd

word linebi
t l

in
e

Capacitor
Pass-Through
Transistors

Each cell stores one bit, and requires 1 transistors
36

Single transistor vs. many gates
• Denser, cheaper ($30/1GB vs. $30/2MB)
• But more complicated, and has analog sensing

Also needs refresh
• Read and write back…
• …every few milliseconds
• Organized in 2D grid, so can do rows at a time
• Chip can do refresh internally

Hence… slower and energy inefficient
37

Register File tradeoffs
+ Very fast (a few gate delays for both read and write)
+ Adding extra ports is straightforward
– Expensive, doesn’t scale
– Volatile

Volatile Memory alternatives: SRAM, DRAM, …
– Slower
+ Cheaper, and scales well
– Volatile

Non-Volatile Memory (NV-RAM): Flash, EEPROM, …
+ Scales well
– Limited lifetime; degrades after 100000 to 1M writes

38

