Numbers and Arithmetic

CS 3410 Computer Science Cornell University

[K. Bala, A. Bracy, E. Sirer, and H. Weatherspoon]

Big Picture: Building a Processor

Simplified Single-cycle processor

Goals for Today

Binary Operations

- Number representations
- One-bit and four-bit adders
- Negative numbers and two's compliment
- Addition (two's compliment)
- Subtraction (two's compliment)

Number Representations

Recall: Binary

- Two symbols (base 2): true and false; 1 and 0
- Basis of Logic Circuits and all digital computers

So, how do we represent numbers in *Binary* (base 2)?

• We know represent numbers in Decimal (base 10).

 $- \text{E.g.} \underbrace{\frac{6}{10^2} \frac{3}{10^1} \frac{7}{10^0}}_{6 \cdot 10^2 + 3 \cdot 10^1 + 7 \cdot 10^0} = 637$

• Can just as easily use other bases

 $- \text{Base 2} - \text{Binary} \underbrace{1}_{2^9} \underbrace{0}_{2^8} \underbrace{0}_{2^7} \underbrace{1}_{2^6} \underbrace{1}_{2^5} \underbrace{1}_{2^4} \underbrace{1}_{2^3} \underbrace{1}_{2^2} \underbrace{0}_{2^1} \underbrace{1}_{2^0} \\ - \text{Base 8} - \text{Octal} \underbrace{0 O}_{\frac{1}{8^3}} \underbrace{1}_{8^2} \underbrace{7}_{8^1} \underbrace{5}_{8^0} \\ 1 \cdot 8^3 + 1 \cdot 8^2 + 7 \cdot 8^1 + 5 \cdot 8^0 = 637 \\ - \text{Base 16} - \text{Hexadecimal} \underbrace{0 X \underbrace{2}_{16^2} \underbrace{7}_{16^1} \underbrace{1}_{6^0} \\ 4 \end{bmatrix}$

Counting in Different Bases

<u> </u>	Dec (base 10)	Bin (base 2)	Oct (base 8)	Hex (ba	<u>se 16</u>)
	0	0	0	0	
	1	1	1	1	
	2	10	2	2	0b 1111 1111 = 255
	3	11	3	3	0h 1 0000 0000 - 256
	4	100	4	4	00 1 0000 0000 - 200
	5	101	5	5	0o 77 = <mark>63</mark>
	6	110	6	6	0 - 100 - 61
	7	111	7	7	00 100 - 04
	8	1000	10	8	0x ff - 255
	9	1001	11	9	UX 11 – 255
	10	1010	12	а	0x 100 = 256
	11	1011	13	b	
	12	1100	14	С	
	13	1101	15	d	
	14	1110	16	е	
	15	1111	17	f	
	16	1 0000	20	10	
	17	1 0001	21	11	
	18	1 0010	22	12	5

Converting between bases $(10 \rightarrow 8)$ Base conversion via repetitive division

Divide by base, write remainder, move left with quotient

637 ÷ 8 = 79	remainder	5	lsb (least significant bit)
79 ÷ 8 = 9	remainder	7	
9 ÷ 8 = 1	remainder	1	
$1\div 8=0$	remainder	1	msb (most significant bit)

637 = 00 1175 msb lsb

Convert base $10 \rightarrow base 2$

Clicker Question!

Convert the number 657₁₀ to base 16 What is the least significant digit of this number?

a) D
b) F
c) O
d) 1
e) 11

Convert from Binary to other powers of 2

Binary to Octal

- Convert groups of three bits from binary to oct
- 3 bits (000—111) have values 0...7 = 1 octal digit
- E.g. 0b 1001111101
 - $1 \quad 1 \quad 7 \quad 5 \quad \rightarrow 001175$

Binary to Hexadecimal

- Convert nibble (group of four bits) from binary to hex
- Nibble (0000—1111) has values 0...15 = 1 hex digit
- E.g. 0b 1001111101
 - 2 7 d \rightarrow 0x27d

Achievement Unlocked!

There are 10 types of people in the world:

- Those who understand binary
- And those who do not
- And those who know this joke was written in base 3

Today's Lecture

Binary Operations

- Number representations
- One-bit and four-bit adders: THIS WEEK'S LAB
- Negative numbers and two's compliment
- Addition (two's compliment)
- Detecting and handling overflow
- Subtraction (two's compliment)

Binary Addition How do we do arithmetic in binary?

Addition works the same way 183 regardless of base +254 Add the digits in each position Carry-out Propagate the carry Ca Unsigned binary addition is pretty easy 001110 Combine two bits at a time +011100 Along with a carry 101010

1-bit Half Adder

Α	B	C _{out}	S
0	0		
0	1		
1	0		
1	1		

- Adds two 1-bit numbers
- Computes 1-bit result and 1-bit carry
- No carry-in
- $S = \overline{A}B + A\overline{B}$
- $C_{out} = AB$

Cout

1-bit (Full) Adder

- Adds three 1-bit numbers
- Computes 1-bit result, 1-bit carry
- Can be cascaded

Α	В	C _{in}	C _{out}	S
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

A

B

Cin

Now You Try (in Lab):

- **1.** Fill in Truth Table
- 2. Create Sum-of-Product Form
- 3. Draw the Circuits

- Adds two 4-bit numbers, along with carry-in
- Computes 4-bit result and carry out
- Carry-out \rightarrow result > 4 bits

Today's Lecture

Binary Operations

- Number representations
- One-bit and four-bit adders
- Negative numbers and two's compliment
- Addition (two's compliment)
- Detecting and handling overflow
- Subtraction (two's compliment)

1st Try: Sign/Magnitude Representation

First Attempt: Sign/Magnitude Representation

- 1 bit for sign (0=positive, 1=negative)
- N-1 bits for magnitude

Problem?

• 2 zero's: +0 different than -0

 $\underline{0}000 = +0$ $\underline{1}000 = -0$

- Complicated circuits
- -2 + 1 = ???

IBM 7090, 1959:

"a second-generation transistorized version of the earlier IBM 709 vacuum tube mainframe computers" ¹⁷

 $\underline{0111} = 7$ $\underline{1}111 = -7$

Final Try: Two's Complement Representation Positive numbers are represented as usual

• 0 = 0000, 1 = 0001, 3 = 0011, 7 = 0111

Leading 1's for negative numbers

To negate any number:

- complement all the bits (i.e. flip all the bits)
- then add 1
- -1: $1 \Longrightarrow 0001 \Longrightarrow 1110 \Longrightarrow 1111$
- -3: $3 \Longrightarrow 0011 \Longrightarrow 1100 \Longrightarrow 1101$
- -8: $8 \Rightarrow 1000 \Rightarrow 0111 \Rightarrow 1000$
- -0: $0 \Rightarrow 0000 \Rightarrow 1111 \Rightarrow 0000$ (this is good, -0 = +0)

Two's Complement

Non-negatives	
unchanged:	flip
+0 = 0000	$\overline{0} = 1111$
+1 = 0001	$\overline{1} = 1110$
+2 = 0010	$\overline{2} = 1101$
+3 = 0011	$\overline{3} = 1100$
+4 = 0100	$\overline{4} = 1011$
+5 = 0101	$\overline{5} = 1010$
+6 = 0110	$\overline{6} = 1001$
+7 = 0111	$\overline{7} = 1000$
	8 = 0111

Negatives

then add 1

-0 = 0000

-1 = 1111

-2 = 1110

-3 = 1101

-4 = 1100

-5 = 1011

-6 = 1010

-7 = 1001

-8 = 1000

Two's Complement vs. Unsigned

4 bit	
Two's	
Complement	-(
-8 7	

-1 =	1 111	= 15
-2 =	1 110	= 14
-3 =	1 101	= 13
-4 =	1 100	= 12
-5 =	1 011	= 11
-6 =	1 010	= 10
-7 =	1 001	= 9
-8 =	1 000	= 8
+7 =	0111	= 7
+6 =	0110	= 6
+5 =	0101	= 5
+4 =	0100	= 4
+3 =	0011	= 3
+2 =	0010	= 2
+1 =	0001	= 1
0 =	0000	= 0

4 bit Unsigned Binary 0 ... 15

Clicker Question!

What is the value of the 2s complement number 11010

a) 26
b) 6
c) -6
d) -10
e) -26

Two's Complement Facts

Signed two's complement

- Negative numbers have leading 1's
- zero is unique: +0 = 0
- wraps from largest positive to largest negative
- N bits can be used to represent
 - unsigned: range 0...2^N-1
 - eg: 8 bits \Rightarrow 0...255
 - signed (two's complement): -(2^{N-1})...(2^{N-1} 1)
 - E.g.: 8 bits \Rightarrow (1000 0000) ... (0111 1111)
 - -128 ... 127

Sign Extension & Truncation

Extending to larger size (1st case on slide 23-24)

- 1111 = -1
- 1111 1111 = -1
- 0111 = 7
- 0000 0111 = 7

Truncate to smaller size

- 0000 1111 = 15
- BUT, 0000 1111 = 1111 = -1

Two's Complement Addition

= 15

Addition as usual. Ignore the sign. It just works! Examples -1 = 1111

1 + -1 =			1 110	= 14
		-3 =	1 101	= 13
-3 + -1 =		-4 =	1 100	= 12
-7 + 3 =		-5 =	<mark>1</mark> 011	= 11
7 . (2)		-6 =	1 010	= 10
/ + (-3)	= Clicker Question	-7 =	1 001	= 9
Which of	the following has problems?	-8 =	1 000	= 8
		+7 =	0111	= 7
a) 7	+1	+6 =	0110	= 6
ь) -	7 1 2	+5 =	0101	= 5
D) -	C-+)	+4 =	0100	= 4
c) -	7 + -1	+3 =	0011	= 3
			0010	= 2
a) C	niy A & B have problems		0001	= 1
e) T	hey all have problems.		0000	= 0
				24

Overflow

When can overflow occur?

- adding a negative and a positive?
 - Overflow cannot occur (Why?)
- adding two positives?
 Overflow *can occur* (Why?)
- adding two negatives?
 Overflow can occur (Why?)

	1 111	= 15
	1 110	= 14
-3 =	<mark>1</mark> 101	= 13
-4 =	1 100	= 12
-5 =	1 011	= 11
-6 =	1 010	= 10
-7 =	<mark>1</mark> 001	= 9
-8 =	1 000	= 8
+7 =	0111	= 7
+6 =	0110	= 6
+5 =	0101	= 5
+4 =	0100	= 4
+3 =	0011	= 3
	0010	= 2
	0001	= 1
	0000	= 0

Overflow

When can overflow occur?

Rule of thumb:

- Overflow happened iff msb's carry in != carry out
- Intuition behind this rule??

Today's Lecture

Binary Operations

- Number representations
- One-bit and four-bit adders
- Negative numbers and two's compliment
- Addition (two's compliment)
- Detecting and handling overflow
- Subtraction (two's compliment)
 - -Why create a new circuit?

-Just use addition using two's complement math How?

Binary Subtraction Two's Complement Subtraction

- Subtraction is addition with a negated operand
 - Negation is done by inverting all bits and adding one

 $A - B = A + (-B) = A + (\overline{B} + 1)$

Binary Subtraction Two's Complement Subtraction

- Subtraction is addition with a negated operand
 - Negation is done by inverting all bits and adding one

 $A - B = A + (-B) = A + (\overline{B} + 1)$

Putting it all together

Two's Complement Adder with overflow detection

Note: 4-bit adder for illustrative purposes and may not represent the optimal design.

Put it together better

Two's Complement Adder with overflow detection

Takeaways

Digital computers are implemented via logic circuits and thus represent *all* numbers in binary (base 2).

We write numbers as decimal or hex for convenience and need to be able to convert to binary and back (to understand what the computer is doing!).

Adding two 1-bit numbers generalizes to adding two numbers of any size since 1-bit full adders can be cascaded.

Using Two's complement number representation simplifies adder Logic circuit design (0 is unique, easy to negate). Subtraction is adding, where one operand is negated (two's complement; to negate: flip the bits and add 1).

Overflow if sign of operands A and B = sign of result S. Can detect overflow by testing $C_{in} = C_{out}$ of the most significant bit (msb), which only occurs when previous statement is true.

Summary

We can now implement combinational logic circuits

- Design each block
 - Binary encoded numbers for compactness
- Decompose large circuit into manageable blocks
 - 1-bit Half Adders, 1-bit Full Adders,

n-bit Adders via cascaded 1-bit Full Adders, ...

- Can implement circuits using NAND or NOR gates
- Can implement gates using use PMOS and NMOStransistors
- And can add and subtract numbers (in two's compliment)!