
CS 3410
Computer Science
Cornell University

[K. Bala, A. Bracy, E. Sirer, and H. Weatherspoon]

memory

inst

32

pc

2
00

new pc
calculation

register file

control

5 5 5

alu

32

Simplified Single-cycle processor

focus
for

today

Binary Operations
• Number representations
• One-bit and four-bit adders
• Negative numbers and two’s compliment
• Addition (two’s compliment)
• Subtraction (two’s compliment)

3

Recall: Binary

• Two symbols (base 2): true and false; 1 and 0

• Basis of Logic Circuits and all digital computers

So, how do we represent numbers in Binary (base 2)?

• We know represent numbers in Decimal (base 10).

– E.g. 6 3 7

• Can just as easily use other bases

– Base 2 — Binary

– Base 8 — Octal

– Base 16 — Hexadecimal

4

10
2

10
1

10
0

1 0 0 1 1 1 1 1 0 1

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

0x 2 7 d

16
2
16

1
16

0

0o 1 1 7 5

8
3

8
2

8
1

8
0

6·10
2

+ 3·10
1

+ 7·10
0

= 637

1·8
3

+ 1·8
2

+ 7·8
1

+ 5·8
0

= 637

Dec (base 10) Bin (base 2) Oct (base 8) Hex (base 16)

5

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

0
1
2
3
4
5
6
7

10
11
12
13
14
15
16
17
20
21
22

0
1

10
11

100
101
110
111

1000
1001
1010
1011
1100
1101
1110
1111

1 0000
1 0001
1 0010

0b 1111 1111 = 255
0b 1 0000 0000 = 256

0o 77 = 63
0o 100 = 64

0x ff = 255
0x 100 = 256

0
1
2
3
4
5
6
7
8
9
a
b
c
d
e
f

10
11
12

Base conversion via repetitive division
• Divide by base, write remainder, move left with quotient

637 ÷ 8 = 79 remainder 5
79 ÷ 8 = 9 remainder 7
9 ÷ 8 = 1 remainder 1
1 ÷ 8 = 0 remainder 1

637 = 0o 1175

6

lsb (least significant bit)

msb (most significant bit)

lsbmsb

Base conversion via repetitive division
Divide by base, write remainder, move left with quotient
637 ÷ 2 = 318 remainder 1
318 ÷ 2 = 159 remainder 0
159 ÷ 2 = 79 remainder 1
79 ÷ 2 = 39 remainder 1
39 ÷ 2 = 19 remainder 1
19 ÷ 2 = 9 remainder 1
9 ÷ 2 = 4 remainder 1
4 ÷ 2 = 2 remainder 0
2 ÷ 2 = 1 remainder 0
1 ÷ 2 = 0 remainder 1

637 = 10 0111 1101 (or 0b10 0111 1101)
7

lsb (least significant bit)

msb (most significant bit)

lsbmsb

Convert the number 65710 to base 16
What is the least significant digit of this number?

a) D
b) F
c) 0
d) 1
e) 11

8

Binary to Octal
• Convert groups of three bits from binary to oct
• 3 bits (000—111) have values 0…7 = 1 octal digit
• E.g. 0b 1001111101

1 1 7 5 à 0o1175

Binary to Hexadecimal
• Convert nibble (group of four bits) from binary to

hex
• Nibble (0000—1111) has values 0…15 = 1 hex digit
• E.g. 0b 1001111101

2 7 d à 0x27d
9

There are 10 types of people in the world:
Those who understand binary
And those who do not
And those who know this joke was written in base 3

10

Binary Operations
• Number representations
• One-bit and four-bit adders: THIS WEEK’S LAB
• Negative numbers and two’s compliment
• Addition (two’s compliment)
• Detecting and handling overflow
• Subtraction (two’s compliment)

11

Addition works the same way
regardless of base
• Add the digits in each position
• Propagate the carry

Unsigned binary addition is pretty easy
• Combine two bits at a time
• Along with a carry

12

183
+ 254

001110
+ 011100

How do we do arithmetic in binary?

1

437

111 000

111
Carry-outCarry-in

13

• Adds two 1-bit numbers
• Computes 1-bit result and

1-bit carry
• No carry-in

• S = !AB + A!B
• Cout = AB

A B

S

Cout

A B Cout S
0 0
0 1
1 0
1 1

Cout

A B A B

S

14

A B

S

CinCout

• Adds three 1-bit numbers
• Computes 1-bit result, 1-bit carry
• Can be cascaded

Now You Try (in Lab):
1. Fill in Truth Table
2. Create Sum-of-Product Form
3. Draw the Circuits

A B Cin Cout S
0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

15

• Adds two 4-bit numbers, along with
carry-in

• Computes 4-bit result and carry out
• Carry-out à result > 4 bits

A0 B0

S0

A1 B1

S1

A2 B2

S2

A3 B3

S3

Cout Cin

0 0 1 10 0 1 0

0 1 0 1

0 0 1 0 0

A[4] B[4]

S[4]

Cout Cin

Binary Operations
• Number representations
• One-bit and four-bit adders
• Negative numbers and two’s compliment
• Addition (two’s compliment)
• Detecting and handling overflow
• Subtraction (two’s compliment)

16

First Attempt: Sign/Magnitude Representation
• 1 bit for sign (0=positive, 1=negative)
• N-1 bits for magnitude

Problem?
• 2 zero’s: +0 different than -0

• Complicated circuits
• -2 + 1 = ???

17

IBM 7090, 1959:
“a second-generation transistorized version of the
earlier IBM 709 vacuum tube mainframe computers”

0111 =
1111 =
0111 = 7
1111 = -7

0000 = +0
1000 = -0

Positive numbers are represented as usual
• 0 = 0000, 1 = 0001, 3 = 0011, 7 = 0111

Leading 1’s for negative numbers
To negate any number:
• complement all the bits (i.e. flip all the bits)
• then add 1
• -1: 1 Þ 0001 Þ 1110 Þ 1111
• -3: 3 Þ 0011 Þ 1100 Þ 1101
• -8: 8 Þ 1000 Þ 0111 Þ 1000
• -0: 0 Þ 0000 Þ 1111 Þ 0000 (this is good, -0 = +0)

18

Non-negatives
unchanged:

+0 = 0000
+1 = 0001
+2 = 0010
+3 = 0011
+4 = 0100
+5 = 0101
+6 = 0110
+7 = 0111
+8 = 1000

19

Negatives
flip then add 1

!0 = 1111 -0 = 0000
!1 = 1110 -1 = 1111
!2 = 1101 -2 = 1110
!3 = 1100 -3 = 1101
!4 = 1011 -4 = 1100
!5 = 1010 -5 = 1011
!6 = 1001 -6 = 1010
!7 = 1000 -7 = 1001
!8 = 0111 -8 = 1000

-1 = 1111 = 15
-2 = 1110 = 14
-3 = 1101 = 13
-4 = 1100 = 12
-5 = 1011 = 11
-6 = 1010 = 10
-7 = 1001 = 9
-8 = 1000 = 8
+7 = 0111 = 7
+6 = 0110 = 6
+5 = 0101 = 5
+4 = 0100 = 4
+3 = 0011 = 3
+2 = 0010 = 2
+1 = 0001 = 1

0 = 0000 = 0
20

4 bit
Two’s

Complement
-8 … 7

4 bit
Unsigned

Binary
0 … 15

What is the value of the 2s complement number
11010

a) 26
b) 6
c) -6
d) -10
e) -26

21

Signed two’s complement
• Negative numbers have leading 1’s
• zero is unique: +0 = - 0
• wraps from largest positive to largest negative

N bits can be used to represent
• unsigned: range 0…2N-1

– eg: 8 bits Þ 0…255
• signed (two’s complement): -(2N-1)…(2N-1 - 1)

– E.g.: 8 bits Þ (1000 0000) … (0111 1111)
– -128 … 127

22

Extending to larger size (1st case on slide 23-24)
• 1111 = -1
• 1111 1111 = -1
• 0111 = 7
• 0000 0111 = 7

Truncate to smaller size
• 0000 1111 = 15
• BUT, 0000 1111 = 1111 = -1

23

Addition as usual. Ignore the sign. It just works!
Examples

1 + -1 =
-3 + -1 =
-7 + 3 =
7 + (-3) =

Which of the following has problems?
a) 7 + 1
b) -7 + -3
c) -7 + -1
d) Only A & B have problems
e) They all have problems.

24

-1 = 1111 = 15

-2 = 1110 = 14

-3 = 1101 = 13

-4 = 1100 = 12

-5 = 1011 = 11

-6 = 1010 = 10

-7 = 1001 = 9

-8 = 1000 = 8
+7 = 0111 = 7
+6 = 0110 = 6
+5 = 0101 = 5
+4 = 0100 = 4
+3 = 0011 = 3
+2 = 0010 = 2
+1 = 0001 = 1

0 = 0000 = 0

Clicker Question

When can overflow occur?
• adding a negative and a positive?

– Overflow cannot occur (Why?)

• adding two positives?
– Overflow can occur (Why?)

• adding two negatives?
– Overflow can occur (Why?)

-1 = 1111 = 15
-2 = 1110 = 14
-3 = 1101 = 13
-4 = 1100 = 12
-5 = 1011 = 11
-6 = 1010 = 10
-7 = 1001 = 9
-8 = 1000 = 8
+7 = 0111 = 7
+6 = 0110 = 6
+5 = 0101 = 5
+4 = 0100 = 4
+3 = 0011 = 3
+2 = 0010 = 2
+1 = 0001 = 1

0 = 0000 = 0

When can overflow occur?

Rule of thumb:
• Overflow happened iff msb’s carry in != carry out
• Intuition behind this rule??

A B Cin Cout S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

SMSB

over
flow

AMSB BMSB

Cout_MSB Cin_MSB

MSB

Wrong
Sign

Wrong
Sign

Binary Operations
• Number representations
• One-bit and four-bit adders
• Negative numbers and two’s compliment
• Addition (two’s compliment)
• Detecting and handling overflow
• Subtraction (two’s compliment)

– Why create a new circuit?
– Just use addition using two’s complement math How?

Two’s Complement Subtraction
• Subtraction is addition with a negated operand

– Negation is done by inverting all bits and adding one
A – B = A + (-B) = A + (!B + 1)

29

S0S1S2S3

A0

B0

A1

B1

A2

B2

A3

B3

Cout

Two’s Complement Subtraction
• Subtraction is addition with a negated operand

– Negation is done by inverting all bits and adding one
A – B = A + (-B) = A + (!B + 1)

30

S0S1S2S3

1

A0

B0

A1

B1

A2

B2

A3

B3

Cout

Two’s Complement Adder with overflow detection

S0S1S2S3

over
flow

A0

B0

A1

B1

A2

B2

A3

B3

mux mux mux mux

0=add
1=sub

Note: 4-bit adder for illustrative purposes and may not represent the optimal design.

Two’s Complement Adder with overflow detection

S0

A0

B0

0=add
1=sub

Before: 2 inverters, 2 AND gates, 1 OR gate After: 1 XOR gate

S0

A0

B0

mux

0=add
1=sub

sub? B0 newB0

0 0 0
0 1 1
1 0 1
1 1 0

Digital computers are implemented via logic circuits and thus
represent all numbers in binary (base 2).

We write numbers as decimal or hex for convenience and need to be
able to convert to binary and back (to understand what the computer
is doing!).

Adding two 1-bit numbers generalizes to adding two numbers of any
size since 1-bit full adders can be cascaded.

Using Two’s complement number representation simplifies adder
Logic circuit design (0 is unique, easy to negate). Subtraction is adding,
where one operand is negated (two’s complement; to negate: flip the
bits and add 1).

Overflow if sign of operands A and B != sign of result S.
Can detect overflow by testing Cin != Cout of the most significant bit
(msb), which only occurs when previous statement is true.

33

We can now implement combinational logic circuits
• Design each block

– Binary encoded numbers for compactness

• Decompose large circuit into manageable blocks
– 1-bit Half Adders, 1-bit Full Adders,

n-bit Adders via cascaded 1-bit Full Adders, ...

• Can implement circuits using NAND or NOR gates
• Can implement gates using use PMOS and NMOS-

transistors
• And can add and subtract numbers (in two’s

compliment)!

34

