Processor

Anne Bracy
CS 3410
Computer Science

Cornell University

The slides are the product of many rounds of teaching CS 3410 by
Professors Weatherspoon, Bala, Bracy, and Sirer.

See P&H Chapter: 2.16-2.20, 4.1-4.4, Appendix B

Goal for Today

Understanding the basics of a processor

We now have the technology to build a CPU!

Putting it all together:

* Arithmetic Logic Unit (ALU)—Lab0 & 1, Lecture 2 & 3
* Register File—Lecture 4 and 5

* Memory—Lecture 5

— SRAM: cache
— DRAM: main memory

* MIPS Instructions & how they are executed

MIPS Register file

32 x 32-bit registers
rO wired to zero

rl
r2

Write port indexed via Ry,

* on falling edge when WE=1 r31

Read ports indexed via Ry, Rj

WE Ry R,

Numbered from O to 31. $ $ $ $
Can be referred by number: SO, S1, S2, ... $31
Convention, each register also has a name:

* $16-523 - Ss0-Ss7, S8-S15—> StO - St7
[P&H p105]

iClicker Question

If we wanted to support 64
registers, what would
change?

(A) W,A,B 32 2 64

(B) R,,R,,R, 526

(C) W32> 64, R, 526
(D) A & B only

rl
r2

r31l

WE Ry R,

J}J???

MIPS Memory

Dy, D,Ollt 1 byte address

—t> +—>
32 memory 32 oxffffffff

%32 TZ T PXx000000b
addr mc Ox00000003

* 32-bit address 0x00000069
0Xx00000008

e 32-bit data (but byte addressed) 0x00000007

) OX00000006
Enable + 2 bit memory control (mc) ST

00: word (4 byte aligned) 0x00000004
OXx00000003

01: write byte 0X00000002

10: write halfword (2 byte aligned) 0x00000001
0X00000000

11: write word (4 byte aligned) 5

Basic Processor

A MIPS CPU with a (modified) Harvard architecture

* Modified: insns & data in common addr space
* Not von Neumann: ours access insh & data in parallel

Registers 00100000001

@ 00100000010
\ NG / data, address, sl

control

Data

CPU 10100010000 MemOry

10110000011
00100010101

Program
Memory

Instruction Processing

Reg.
File

ALU
)

555

control
Instructions: A basic processor

stored in memory, encoded in binary e fetches

00100000000000100000000000001010
00100000000000010000000000000000 * decodes

00000000001000100001100000101010
° executes

one instruction at a time

7

Levels of Interpretation: Instructions

for (i = 0; i < 10; i++)
printf(“go cucs”);

- =

main: addi r2, ro, 10
addi rl, ro, o
loop: slt r3, rl, r2

op=addi rZJ— 10

001000 ©00100000000000001010

00100000000000010000000000000000
00000000001000100001100000101010

. =

ALU, Control, Register File, ...

High Level Language
* (C, Java, Python, Ruby, ...
* Loops, control flow, variables

Assembly Language
* No symbols (except labels)
* One operation per statement

* “human readable machine
language”

Machine Language
* Binary-encoded assembly

° Labels become addresses
* The language of the CPU

Instruction Set Architecture (ISA)

Different CPU architectures specify different instructions

Two classes of ISAs
* Reduced Instruction Set Computers (RISC)
IBM Power PC, Sun Sparc, MIPS, Alpha
* Complex Instruction Set Computers (CISC)
Intel x86, PDP-11, VAX

Another ISA classification: Load/Store Architecture
* Data must be in registers to be operated on

For example: array[x] = array|y] + array|z]
1 add? OR 2 loads, an add, and a store ?

* Keeps HW simple = many RISC ISAs are load/store

iClicker Question

What does it mean for an architecture to be called
a load/store architecture?

(A)Load and Store instructions are supported by
the ISA.

(B) Load and Store instructions can also perform
arithmetic instructions on data in memory.

(C) Data must first be loaded into a register before
it can be operated on.

(D)Every load must have an accompanying store at
some later point in the program.

Five Stages of MIPS Datapath

Reg. f"-U
File

555

control

< Fetch S < S < >< Memorv> < WB

>

A Single cycle processor — this diagram is not 100% spatial

Five Stages of MIPS datapath

Basic CPU execution loop

1. Instruction Fetch
. Instruction Decode
. Execution (ALU)
. Memory Access
. Register Writeback

Stage 1: Instruction Fetch

Reg. f"-U
File

555

control

Fetch S < Decode S < Execute < Memory 5 < WB

>

* Fetch 32-bit instruction from memory
* IncrementPC=PC+4

Stage 2: Instruction Decode

—

Reg.
File

555

control

Fetch s < Decode S < Execute < Memorv> < WB

>
e @Gather data from the instruction

* Read opcode; determine instruction type, field lengths
* Read in data from register file
(0, 1, or 2 reads for jump, addi, or add, respectively)

14

Stage 3: Execution (ALU)

Reg.
File

555

control

Fetch S < Decode S < Execute S< Memory 5 < WB S

* Useful work done here (+, -, *, /), shift, logic operation,

comparison (slt)
* Load/Store? lw $t2, 32(5t3) = Compute address

Stage 4: Memory access

=

\

Reg.
File

555

control R/W

Fetch S < Decode S < Execute |V|emorv> < WB

><€ >

* Used by load and store instructions only

* Other instructions will skip this stage

Stage 5: Writeback

e 5

555

control

Fetch S < Decode s < Execute s> < Memorv> < WB

>

* Write to register file
— For arithmetic ops, logic, shift, etc, load. What about stores?

 Update PC

— For branches, jumps

iClicker Question

Which of the following statements is true?

(A) All instructions require an access to Program
Memory.

(B) All instructions require an access to Data Memory.
(C) All instructions write to the register file.
(D) Some MIPS instructions are shorter than 32 bits.

MIPS Instruction Types

(Arithmetic/LogicaI

* R-type: result and two source registers, shift amount
* |-type: 16-bit immediate with sign/zero extension

N\

Memory Access
* |-type

* |oad/store between registers and memory
* word, half-word and byte operations

Control flow
* J-type: fixed offset jumps, jump-and-link
* R-type: register absolute jumps
* |-type: conditional branches: pc-relative addresses

R-Type (1): Arithmetic and Logic

0000000100000110001006 1001160

op rs rt rd func

6 5 5 5 6 bits

func mnemonic description
Ox21 ADDU rd, rs, rt R[rd] rs] + R[rt]
0x23 SUBU rd, rs, rt rd] rs] — R[rt]
O0x25 ORrd, rs, rt rd] rs] | R[rt.
rd, rs, rt rd] rs] & R[rt]
Ox27 NOR rd, rs rt rd] =~ (R[rs] | R[rt])

example:rd=r8 ©r6 # rd, r8, r6
rd, rs, rt

Arithmetic and Logic

XOR rd4 r8 r6

Prog.
Mem

PC

Reg.
File

555

control

5 < Memorv>< WB

skip

Example:r4=r8 ©r6 # XORr4,r8, r6

R-Type (2): Shift Instructions

0000000BYYYVV10001000 91515151515,
I I I I I I I

op - rt rd func

6 5 5 5 6 bits

mhemonic description

rd, rt, R[rd] It]

SRLrd, rt, shamt | R[rd] rt] >>> shamt (zero ext.)

SRA rd, rt, shamt | R[rd] rt] >> shamt (sign ext.)

example: r8 =r4 * 64 #SLLrS, r4,
r8 =r4 <<

SLL r8 r4 6

Prog.

Reg.
File

PC

555

control

Memorv>< WB

> €
skip

Example: r8=r4 * 64 #SLLr8, r4, 6
r8=r4<<6

I-Type (1): Arithmetic w/immediates
|@@1@@1|@@1@1|@@1@1|

op rs rd
6 5 5

mhemonic description

ADDIU rd, rs, imm R[rd] rs] + sign_extend(imm)

Oxc ANDIrd, rs,imm R[rd] rs] & zero_extend(imm)

Oxd ORIlrd, rs, imm R[rd rs] | zero_extend(imm)

example: r5= r5+ # ADDIU r5, r5,
r5

What |f |mmEd|ate IS negatlve? Unsigned means no overflow detection.

r5 +=-1 r5 += 65535 The immediate can be negative!

p

Arithmetic w/immediates

ADDIUr5 r55

Prog.

Reg.
File

PC

555

control

\mm._
16
(shamt

extend

Example: r5=r5+5 # ADDIU r5, r5, 5

Decode . Execute o Memory>< V;lSB

skip

iClicker Question

Are you coming to the Homework 1 Review
Session?

(A)Yes, I’'m coming tonight (Tuesday).

(B) Yes, I’'m coming tomorrow (Wednesday).

(C) Yes, but | don’t know which night.
(D)Not sure yet.

(E) | won’t be attending either.

I-Type (2): Load” Upper Immediate

0011110000000101
I I I I
op - rd

6 5 5

mnemonic description
LUI rd, R[rd] = << 16

example: r5 =0x 0000 # LUI 5,

Example: LUI r5, Oxdead
ORI r5, r5 Oxbeef
What does r5 =7

Load Upper Immediate

>

Reg. f"-U

File
;DQ 0x50000
22 Arl—s

control 16

imm

< extend
16

Sshamt

Example: r5 =0x50000 #LUIr5,5

Decode . Execute o Memory>< VZBB

skip

MIPS Instruction Types

Arithmetic/Logical

* R-type: result and two source registers, shift amount
* |-type: 16-bit immediate with sign/zero extension

N

M

emory Access

* |-type
* |load/store between registers and memory
* word, half-word and byte operations

_ Y

Control flow
* J-type: fixed offset jumps, jump-and-link

* R-type: register absolute jumps
* |-type: conditional branches: pc-relative addresses

Memory Layout Options

r5 contains 5 (0x00000005)

SB r5, O(r0)
SB r5, 2(r0)
SW r5, 8(r0)

Two ways to store a word in
memory.

OXFEFFFfe

Ox0000000b
0x0000000a
0x00000009
0x00000008
0x00000007
0x00000006
0x00000005
0x00000004
0x00000003
0x00000002
0x00000001
0x00000000

#

30

Endianness n

Endianness: Ordering of bytes within a memory word
Little Endian = least significant part first (MIPS, x86)

1§0[0]0, 1001 1002 1003

as 4 bytes

as 2 halfwords
as 1 word 0x12345678

Big Endian = most significant part first (MIPS, networks)

1§0[0]0, 1001 1002 1003

as 4 bytes

as 2 halfwords
as 1 word 0x12345678

Endianness
Endianness: Ordering of bytes within a memory word

Little Endian = least significant part first (MIPS, x86)
1000 1001 1002 1003

as 4 bytes[5,73 0x56 | 0x34 0x12

as 2 halfwords 0Ox5678 Ox1234

as 1 word 0x12345678

Big Endian = most significant part first (MIPS, networks)

1§0[0]0, 1001 1002 1003

as 4 bytes[gyx12 0x34 0x56 0x78

as 2 halfwords 0x1234 0Ox5678

as 1 word 0x12345678

Big Endian Memory Layout

r5 contains 5 (0x00000005)

SB r5, 2(r0)
LB r6, 2(r0)

SW r5, 8(r0)
LB r7, 8(r0)
LB r8, 11(r0)

OXFEFFFfe

Ox0000000b
0x0000000a
0x00000009
0x00000008
0x00000007
0x00000006
0x00000005
0x00000004
0x00000003
0x00000002
0x00000001
0x00000000

#

33

Big Endian Memory Layout

OXFEFFFfe

r5 contains 5 (0x00000005)

0x0000000b
SB r5, 2(r0) 0x0000000a

LB r6, 2(r0) 0x00000009

R[r6] = Ox05 0x00000008
0x00000007

SW r5, 8(r0) 0X00000006

0X00000005
LB r7, 8(r0) 0x00000004
LB r8, 11(r0) 0x00000003
R[r7] = 0x00 0x00000002

R[r8] = 0x05 0x00000001
0x00000000 3

I-Type (3): Memory Instructions

1010110010100001
op rs nrd

6 5 5

base + offset

. . . addressing
mnemonic description y

LW rd, offset(rs) R[rd] = Mem[offsetJfR[rs]]
SW rd, (rs) | Mem| +R[rs]] = R[rd]

signed
offsets

Example: = Mem[+r5]=r1 # rl, (r5)

Memory Operations

Reg.
File

555

control

o

i)

>)r5+4‘
T

addr

Example: = Mem[4+r5] =rl

H

> Data
Mem

SW rl, 4(r5)

More Memory Instructions
1010110010100001

op S
6 5

mnhemonic

rd
5

description

LB rd, offset(rs)
LBU rd, offset(rs)
LH rd, offset(rs)
LHU rd, offset(rs)
LW rd, offset(rs)
SB rd, offset(rs)
SH rd, offset(rs)
SW rd, offset(rs)

el
el
el
el
el

= sign_ext(Mem|[offset+R][rs]])

= zero_ext(Mem]offset+R[rs]])

= sign_ext(Mem[offset+R][rs]])
= zero_ext(Mem]offset+R[rs]])
= Mem[offset+R][rs]]
offset+R][rs]] = R[rd]
offset+R][rs]] = R[rd]

offset+R[rs]] = R[rd]

MIPS Instruction Types

Arithmetic/Logical

* R-type: result and two source registers, shift amount
* |-type: 16-bit immediate with sign/zero extension

Memory Access

* |-type
* |load/store between registers and memory
* word, half-word and byte operations

(Control flow
* J-type: fixed offset jumps, jump-and-link

* R-type: register absolute jumps
* |-type: conditional branches: pc-relative addresses

J

_

J-Type (1): Absolute Jump

000010
I I
op

op Mnemonic Description “o” = concatenate
J target PC = (PC+4)3; 55 ° °

i

I(PC"'4)31..28 |
4 bits

(PC+4)31. 58

MIPS Quirk:
jump targets computed using already incremented PC

Absolute Jump

HA

555

>

control
J

L Imm

\\ >

16

32
*0x4000004

Example: PC=(PC+4)3; 55 ® * 00 #J0x1000001

R-Type (3): Jump Register

00000000011000000000000000001000

op rs - - - func
6 5 5 5 5

mnemonic description

JRrs PC = R|[rs]

Example: JR r3

Jump Register

R[r3]

>

Reg.
File >
555 :D

IR
control

. Imm

tgt

ex:JRr3
op func mnemonic description

OxO | O0x08 JRrs PC = R[rs]

iClicker Question

What is a good trait about the Jump Register
instruction?

(A) Since registers are 32 bits, you can specify any
address.

(B) The address you’re jumping to is programmable. It

doesn’t have to be hard-coded in the instruction
because it lives in a register.

(C) It allows you to jump to an instruction with an
address ending in something other than 00, which
is very useful.

(D) Both A and B.
(E) Both A and C.

Moving Beyond Jumps

Can use Jump or Jump Register instruction to
jump to Oxabcd1234

What about a jump based on a condition?

#Hassume0<=r3<=1

if (r3 ==0) jump to Oxdecafe00
else jump to Oxabcd1234

I-Type (4): Branches
|@@@1@@|@@1@1|@@@@1|

op rs rd
6 5 5

Op mnemonic description
Ox4 BEQrs, rd, offset | if R[rs] == R[rd] then PC = PC+4 + (offset<<2)
Ox5 BNE rs, rd, offset | if R[rs] != R[rd] then PC = PC+4 + (offset<<2)

Example: BEQ r5, r1,
if (R[xr5]==R[rl])

PC = PC+4 + 12 (i.e. 12 == 3<<2)
A word about all these +’s...

Control Flow: Branches

R[r5] \

Reg. }A‘LU

File R[r1] _,) [
i

555 [l —
- o |&—0

>

offsety control ;¢

\+/ L Imm

(PC+4 +3<<%gt
89 g

>Lext

ex: BEQ~r5,rl, 3
Op mnemonic description
Ox4 BEQrTs, rd, offset if R[rs] == R[rd] then PC = PC+4 + (offset<<2)

46

I-Type (5): Conditional Jumps

00000100101000010000000000000010

op rs subop offset
6 bits 5 bits 5 bits 16 bits

signed
op subop mnemonic description J/

Ox1 O0xO0 BLTZ rs, offset if R[rs] < O then PC = PC+4+ (offset<<2)
Ox1 BGEZ rs, offset | if R[rs] = 0 then PC = PC+4+ (offset<<2)
Ox6 0xO0 BLEZ rs, offset | if R[rs] £0 then PC = PC+4+ (offset<<2)
Ox7 0x0 BGTZ rs, offset if R[rs] > 0 then PC = PC+4+ (offset<<2)

Example: BGEZ r5, 2
if (R[x5] 2 0)
PC = PC+4 + 8 (i.e. 8 == 2<<2)

47

Control Flow: More Branches

: R[r5]

INst Reg. @
| File) l

T

555

PC N
offset control

/ A\ . . BEQZ
_-IJ \Imm

(PC+4 +2<<% ot
89 g

ex: BGEZ r5, 2

>Lext

op subop mnemonic description

Ox1 | Ox1 BGEZ rs, offset | if R[rs] 2 0 then PC = PC+4+ (offset<<2)

48

J-Type (2): Jump and Link

0000110100000V 1

op
6 bits

mnemonic

immediate
26 bits

.« 4. Discuss later
description /

JAL target

Why?

r31 = PC+8 (+8 due to branch crelay slot)
PC - (PC+4)31__28 L target L OO

Function/procedure calls

Jump and Link

Mem

PC

Reg.
File

>

offset

\+/ L Imm

4)[]‘ R[r31]

555

i)

control

ex: JAL 0x1000001 r31 =PC+8

op

mnemonic

description

Could have
used ALU for
link add

g J
PC = (PC+4)3; ,5® 0x4000004

JAL target

r31 = PC+8 (+8 due to branch delay slot)
PC - (PC+4)31”28 = (target << 2)

MIPS Instruction Types
VArithmetic/LogicaI

* R-type: result and two source registers, shift amount
* |-type: 16-bit immediate with sign/zero extension

VI\/Iemory Access

* |-type
* |oad/store between registers and memory
* word, half-word and byte operations

VControI flow

* J-type: fixed offset jumps, jump-and-link
* R-type: register absolute jumps
* |-type: conditional branches: pc-relative addresses

Many other instructions possible:
 vector add/sub/mul/div, string operations

* manipulate coprocessor
* |/O

iClicker Question

What is the one topic you’re most uncertain about
at this point in the class?

(A)Gates & Logic
(B) Finite State Machines

(C) The MIPS Processor Design
(D)MIPS Assembly

(E) Something Else

Summary

We have all that it takes to build a processor!
* Arithmetic Logic Unit (ALU)
* Register File
* Memory

MIPS processor and ISA is an example of a Reduced
Instruction Set Computers (RISC).

Simplicity is key, thus enabling us to build it!

We now know the data path for the MIPS ISA:
* register, memory and control instructions

