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Announcements
Project3 Cache Race Games night Monday, May 4", 5pm

e Come, eat, drink, have fun and be merry!
e Location: B17 Upson Hall

Prelim2: Thursday, April 30t in evening
e Time and Location: 7:30pm sharp in Statler Auditorium
 QOld prelims are online in CMS
e Prelim Review Session:
TODAY, Tuesday, April 28, 7-9pm in B14 Hollister Hall

Project4:
* Design Doc due May 5%, bring design doc to mtg May 4-6
e Demos: May 12 and 13
e Will not be able to use slip days



Announcements

Prelim2 Topics

Lecture: Lectures 10 to 24

Data and Control Hazards (Chapters 4.7-4.8)

RISC/CISC (Chapters 2.16-2.18, 2.21)

CaIIin)g conventions and linkers (Chapters 2.8, 2.12, Appendix
A.1-6

Caching and Virtual Memory (Chapter 5)
Multicore/parallelism (Chapter 6)

Synchronization (Chapter 2.11)

Traps, Exceptions, OS (Chapter 4.9, Appendix A.7, pp 445-452)

HW?2, Labs 3/4, C-Labs 2/3, PA2/3

Topics from Prelim1 (not the focus, but some possible
qguestions)



Survey

Are you a gamer?

a) PC Games (NVIDIA card, etc)
b) Xbox One/PlayStation 4/etc
c) Mobile phone

d) Online games (minecraft, etc)
e) You do not play games!



GPUs



The supercomputer in your laptop

GPU: Graphics processing unit

Very basic till about 1999
Specialized device to accelerate display

Then started changing into a full processor

2000-...: Frontier times



Parallelism

CPU: Central Processing Unit
GPU: Graphics Processing Unit




Parallelism
GPU parallelism is similar to multicore parallelism

Key: How to gang schedule thousands of threads on
thousands of cores?

Hardware multithreading with thousands of register sets

GPU Hardware multithreads (like multicore Hyperthreads)
* Multilssue + extra PCs and registers — dependency logic
 [llusion of thousands of cores

* Fine grain hardware multithreading - Easier to keep pipelines
full
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GPU Architectures

Processing is highly data-parallel
* GPUs are highly multithreaded

e Use thread switching to hide memory latency
— Less reliance on multi-level caches

* Graphics memory is wide and high-bandwidth
Trend toward general purpose GPUs

e Heterogeneous CPU/GPU systems

* CPU for sequential code, GPU for parallel code
Programming languages/APlIs

* DirectX, OpenGL

e C for Graphics (Cg), High Level Shader Language (HLSL)

e Compute Unified Device Architecture (CUDA)



GPU-type computation offers higher GFlops

GFLOPs Trend
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GPUs: Faster than Moore’ s Law
Moore’s Law is for Wimps?!
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Programmable Hardware

e Started in 1999

* Flexible, programmable
— Vertex, Geometry, Fragment Shaders

 And much faster, of course

* 1999 GeForce256: 0.35 Gigapixel peak fill rate
e 2001 GeForce3: 0.8 Gigapixel peak fill rate
e 2003 GeForceFX Ultra: 2.0 Gigapixel peak fill rate
 ATlI Radeon 9800 Pro: 3.0 Gigapixel peak fill rate

e 2006 NV6O: ... Gigapixel peak fill rate
o 2009 GeForce GTX 285: 10 Gigapixel peak fill rate
« 2011

— GeForce GTC 590: 56 Gigapixel peak fill rate
— Radeon HD 6990: 2x26.5

e 2012
— GeForce GTC 690: 62 Gigapixells peak fill rate



Evolution of GPU
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Around 2000

Fixed function pipeline

o
{ vertices } 2 \ P
O




Around 2005

Programmable vertex and pixel processors

G70 (Based on NV40): 2005

GeForce 7800
Parallelism PN
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Post 2006: Unified Architecture




Why?
Parallelism: thousands of cores
Pipelining
Hardware multithreading

Not multiscale caching
e Streaming caches

Throughput, not latency




Flynn’s Taxonomy




MIMD array of SIMD procs




Grids, Blocks, and Threads
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Shuang Zhao, Cornell University, 2014



CUDA Memory
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Shuang Zhao, Cornell University, 2014
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Heterogeneous Computing

Host: the CPU and its memory Device: the GPU and its memory

Shuang Zhao, Cornell University, 2014



Programming using CUDA

Compute Unified
Device Architecture

do_something_on_host(); "~
kernel<<<nBlk, nTid>>>(args); ------="-""=- .
cudaDeviceSynchronize();

do_something else_on_host();

Shuang Zhao, Cornell University, 2014



Hardware Thread Organization

Threads in a block are partitioned into warps

e Allthreads in a warp execute in a Single Instruction Multiple
Data, or SIMD, fashion

e All paths of conditional branches will be taken
e Warp size varies, many graphics cards have 32

NO guaranteed execution ordering between warps

Shuang Zhao, Cornell University, 2014



Branch Divergence

Threads in one warp execute very different branches
Significantly harms the performance!

Simple solution:

* Reordering the threads so that all threads in each block are
more likely to take the same branch

* Not always possible

Shuang Zhao, Cornell University, 2014



Example: NVIDIA Tesla

Host CPU -- System Memory

Host Interface
High-Definition

aste _
Input Assembler Video Processors

Vertex Work Pixel Work Compute Work
Distribution Distribution Distribution

Interconnection Network

| I I |

i —
(

|| || | |
rface

Chapter 6 — Parallel
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Example: NVIDIA Tesla

Streaming Processors
* Single-precision FP and integer units
* Each SP is fine-grained multithreaded

Warp: group of 32 threads

e Executed in parallel,

Processors —

SI IVI D Styl e UltraSPARC T2 Tesla Multiprocessor
— 8 SPs B Tveet
x 4 clock cycles B e
B Thread4
* Hardware contexts B Treace
for 24 warps B Thread

— Registers, PCs, ...

Chapter 6 — Parallel
Processors from Client to
Cloud — 28



single-threaded free lunch
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single-threaded free lunch

Welcome to
the jungle
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Historical Perspective



Goal for Today: Back to the Future

Can multiple entities interact with processor at once?



Back to the Future: Timesharing
Can multiple entities interact with processor at once?
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Back to the Future: Timesharing
Fernando J. Corbato (MIT)

 Known for pioneering time sharing systems and
MULTICS operating system (later influence UNIX)

* Influences: Turing Award Recipient (1990).

 "for his pioneering work in organizing the concepts and
leading the development of the general-purpose, large-
scale, time-sharing and resource-sharing computer systems”

o Corbatd's Law: "Regardless of whether one is dealing with
assembly language or compiler language, the number of
debugged lines of source code per day is about the same!"

IBM 7090



Back to the Future: Timesharing
1963 Timesharing: A Solution to Computer Bottlenecks

http://www.youtube.com/watch?v=Q07PhW5sCEk&feature=youtu.be

* Reporter John Fitch at the MIT Computation Center in an

extended interview with MIT professor of computer science
Fernando J. Corbato

 The prime focus of the film is timesharing, one of the most
important developments in computing

IBM 7090
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