
Prof. Hakim Weatherspoon
CS 3410, Spring 2015

Computer Science
Cornell University

Project3 Cache Race Games night Monday, May 4th, 5pm
• Come, eat, drink, have fun and be merry!
• Location: B17 Upson Hall

Prelim2: Thursday, April 30th in evening
• Time and Location: 7:30pm sharp in Statler Auditorium
• Old prelims are online in CMS
• Prelim Review Session:

TODAY, Tuesday, April 28, 7-9pm in B14 Hollister Hall

Project4:
• Design Doc due May 5th, bring design doc to mtg May 4-6
• Demos: May 12 and 13
• Will not be able to use slip days

Prelim2 Topics
• Lecture: Lectures 10 to 24
• Data and Control Hazards (Chapters 4.7-4.8)
• RISC/CISC (Chapters 2.16-2.18, 2.21)
• Calling conventions and linkers (Chapters 2.8, 2.12, Appendix

A.1-6)
• Caching and Virtual Memory (Chapter 5)
• Multicore/parallelism (Chapter 6)
• Synchronization (Chapter 2.11)
• Traps, Exceptions, OS (Chapter 4.9, Appendix A.7, pp 445-452)

• HW2, Labs 3/4, C-Labs 2/3, PA2/3

• Topics from Prelim1 (not the focus, but some possible
questions)

Are you a gamer?
a) PC Games (NVIDIA card, etc)
b) Xbox One/PlayStation 4/etc
c) Mobile phone
d) Online games (minecraft, etc)
e) You do not play games!

GPU: Graphics processing unit

Very basic till about 1999
Specialized device to accelerate display

Then started changing into a full processor

2000-…: Frontier times

CPU: Central Processing Unit
GPU: Graphics Processing Unit

GPU parallelism is similar to multicore parallelism

Key: How to gang schedule thousands of threads on
thousands of cores?

Hardware multithreading with thousands of register sets

GPU Hardware multithreads (like multicore Hyperthreads)
• MultiIssue + extra PCs and registers – dependency logic
• Illusion of thousands of cores
• Fine grain hardware multithreading - Easier to keep pipelines

full

Processing is highly data-parallel
• GPUs are highly multithreaded
• Use thread switching to hide memory latency

– Less reliance on multi-level caches
• Graphics memory is wide and high-bandwidth

Trend toward general purpose GPUs
• Heterogeneous CPU/GPU systems
• CPU for sequential code, GPU for parallel code

Programming languages/APIs
• DirectX, OpenGL
• C for Graphics (Cg), High Level Shader Language (HLSL)
• Compute Unified Device Architecture (CUDA)

Peak
Performance
(polygon
s’s/sec)

Year

HP CRX
SGI Iris

SGI GT

HP VRX

Stellar GS1000

SGI VGX

HP TVRX

SGI SkyWriter

SGI

E&S
F300

One-pixel polygons (~10M polygons @ 30Hz)

SGI
RE2

RE1
Megatek

86 88 90 92 94 96 98 00
104

105

106

107

108

109

UNC Pxpl4

UNC Pxpl5

UNC/HP PixelFlow

Flat
shading

Gouraud
shading

Antialiasing

Slope ~2.4x/year
(Moore's Law ~ 1.7x/year) SGI

IR E&S
Harmony

SGI
R-Monster

Division VPX

E&S Freedom

Accel/VSIS
Voodoo

Glint

Division
Pxpl6

PC Graphics

Textures

SGI
Cobalt

Nvidia TNT
3DLabs

Graph courtesy of Professor John Poulton (from Eric Haines)

GeForce

104

105

106

107

108

109

ATI
Radeon 256

nVidia
G70

• Started in 1999
• Flexible, programmable

– Vertex, Geometry, Fragment Shaders
• And much faster, of course

• 1999 GeForce256: 0.35 Gigapixel peak fill rate
• 2001 GeForce3: 0.8 Gigapixel peak fill rate
• 2003 GeForceFX Ultra: 2.0 Gigapixel peak fill rate
• ATI Radeon 9800 Pro : 3.0 Gigapixel peak fill rate
• 2006 NV60: ... Gigapixel peak fill rate
• 2009 GeForce GTX 285: 10 Gigapixel peak fill rate
• 2011

– GeForce GTC 590: 56 Gigapixel peak fill rate
– Radeon HD 6990: 2x26.5

• 2012
– GeForce GTC 690: 62 Gigapixel/s peak fill rate

Fixed function pipeline

Programmable vertex and pixel processors

nVIDIA Kepler

• Parallelism: thousands of cores
• Pipelining
• Hardware multithreading
• Not multiscale caching

• Streaming caches
• Throughput, not latency

Single Instruction
Single Data
(SISD)

Multiple Instruction
Single Data
(MISD)

Single Instruction
Multiple Data
(SIMD)

Multiple Instruction
Multiple Data
(MIMD)

nVIDIA Kepler

Shuang Zhao, Cornell University, 2014

Fastest, per-thread

Faster, per-block

Slower, global

Read-only, cached

Shuang Zhao, Cornell University, 2014

Host: the CPU and its memory Device: the GPU and its memory

Shuang Zhao, Cornell University, 2014

Compute Unified
Device Architecture
do_something_on_host();
kernel<<<nBlk, nTid>>>(args);
cudaDeviceSynchronize();
do_something_else_on_host();

…

Highly parallel

Shuang Zhao, Cornell University, 2014

Threads in a block are partitioned into warps
• All threads in a warp execute in a Single Instruction Multiple

Data, or SIMD, fashion
• All paths of conditional branches will be taken
• Warp size varies, many graphics cards have 32

NO guaranteed execution ordering between warps

Shuang Zhao, Cornell University, 2014

Threads in one warp execute very different branches
Significantly harms the performance!

Simple solution:
• Reordering the threads so that all threads in each block are

more likely to take the same branch
• Not always possible

Shuang Zhao, Cornell University, 2014

Streaming
multiprocessor

8 × Streaming
processors

Chapter 6 — Parallel
Processors from Client to
Cloud — 27

Streaming Processors
• Single-precision FP and integer units
• Each SP is fine-grained multithreaded

Warp: group of 32 threads
• Executed in parallel,

SIMD style
– 8 SPs

× 4 clock cycles
• Hardware contexts

for 24 warps
– Registers, PCs, …

Chapter 6 — Parallel
Processors from Client to
Cloud — 28

Can multiple entities interact with processor at once?

Can multiple entities interact with processor at once?

Write-
BackMemory

Instruction
Fetch Execute

Instruction
Decode

extend

register
file

control

alu

memory

din dout

addr
PC

memory

new
pc

in
st

IF/ID ID/EX EX/MEM MEM/WB

im
m

B
A

ct
rl

ct
rl

ct
rl

B
D D

M

compute
jump/branch

targets

+4

forward
unit

detect
hazard

Fernando J. Corbató (MIT)
• Known for pioneering time sharing systems and

MULTICS operating system (later influence UNIX)
• Influences: Turing Award Recipient (1990).

• "for his pioneering work in organizing the concepts and
leading the development of the general-purpose, large-
scale, time-sharing and resource-sharing computer systems“

• Corbató's Law: "Regardless of whether one is dealing with
assembly language or compiler language, the number of
debugged lines of source code per day is about the same!"

IBM 7090

1963 Timesharing: A Solution to Computer Bottlenecks
http://www.youtube.com/watch?v=Q07PhW5sCEk&feature=youtu.be

• Reporter John Fitch at the MIT Computation Center in an
extended interview with MIT professor of computer science
Fernando J. Corbato

• The prime focus of the film is timesharing, one of the most
important developments in computing

IBM 7090

	Back to the Future:�A Historical Perspective
	Announcements
	Announcements
	Survey
	GPUs
	The supercomputer in your laptop
	Parallelism
	Parallelism
	Slide Number 9
	GPU Architectures
	Slide Number 11
	GPUs: Faster than Moore’s Law�Moore’s Law is for Wimps?!
	Programmable Hardware
	Evolution of GPU
	Around 2000
	Around 2005
	Post 2006: Unified Architecture
	Why?
	Flynn’s Taxonomy
	MIMD array of SIMD procs
	Grids, Blocks, and Threads
	CUDA Memory
	Heterogeneous Computing
	Programming using CUDA
	Hardware Thread Organization
	Branch Divergence
	Example: NVIDIA Tesla
	Example: NVIDIA Tesla
	Slide Number 29
	Slide Number 30
	Historical Perspective
	Goal for Today: Back to the Future
	Back to the Future: Timesharing
	Back to the Future: Timesharing
	Back to the Future: Timesharing

