
Hakim Weatherspoon
CS 3410, Spring 2015

Computer Science
Cornell University

P&H Chapter 2.11

Project3 due tomorrow, Friday, April 24th

• Games night Monday, May 4th, 5-7pm. Location: B17 Upson
• Come, eat, drink, have fun and be merry!

Prelim2 is next week, Thursday, April 30th

• Time and Location: 7:30pm in Statler Auditorium
• Old prelims are online in CMS
• Prelim Review Session:

Sunday, April 26, 7-9pm in B14 Hollister Hall
Tuesday, April 28, 7-8pm in B14 Hollister Hall

Project4: Final project out next week
• Demos: May 12 and 13
• Will NOT be able to use slip days

Next three weeks
• Week 12 (Apr 21): Lab4 due in-class, Proj3 due Fri, HW2

due Sat
• Week 13 (Apr 28): Proj4 release, Prelim2
• Week 14 (May 5): Proj3 tournament Mon, Proj4 design

doc due

Final Project for class
• Week 15 (May 12): Proj4 due Wed, May 13th

...Core0
Cache

Memory I/O

Interconnect

Core1
Cache

CoreN
Cache

... ...

Thread A (on Core0) Thread B (on Core1)
for(int i = 0, i < 5; i++) { for(int j = 0; j < 5; j++) {

x = x + 1 x = x + 1
} }

x should be greater than 1 after both threads loop at least once!

...Core0
Cache

Memory I/O

Interconnect

Core1
Cache

CoreN
Cache

... ...

Thread A (on Core0) Thread B (on Core1)
for(int i = 0, i < 5; i++) { for(int j = 0; j < 5; j++) {

LW $t0, addr(x) LW $t0, addr(x)
ADDIU $t0, $t0, 1 ADDIU $t0, $t0, 1
SW $t0, addr(x) SW $t0, addr(x)

} }

$t0=0

$t0=1

x=1

$t0=0

$t0=1

x=1

x should be greater than 1 after both threads loop at least once!

Need it to exploit multiple processing units
…to provide interactive applications
…to parallelize for multicore
…to write servers that handle many clients

Problem: hard even for experienced programmers
• Behavior can depend on subtle timing differences
• Bugs may be impossible to reproduce

Needed: synchronization of threads

Synchronization
• Threads and processes
• Critical sections, race conditions, and mutexes
• Atomic Instructions

• HW support for synchronization
• Using sync primitives to build concurrency-safe data

structures

• Language level synchronization

Concurrency poses challenges for:
Correctness

• Threads accessing shared memory should not interfere with
each other

Liveness
• Threads should not get stuck, should make forward progress

Efficiency
• Program should make good use of available computing

resources (e.g., processors).
Fairness

• Resources apportioned fairly between threads

How to implement mutex locks?
What are the hardware primitives?

Then, use these mutex locks to implement critical
sections, and use critical sections to write parallel
safe programs.

Q: How to implement critical section in code?
A: Lots of approaches….
Mutual Exclusion Lock (mutex)
lock(m): wait till it becomes free, then lock it
unlock(m): unlock it

safe_increment() {
pthread_mutex_lock(&m);
hits = hits + 1;
pthread_mutex_unlock(&m)

}

Load linked: LL rt, offset(rs)

Store conditional: SC rt, offset(rs)
• Succeeds if location not changed since the LL

– Returns 1 in rt
• Fails if location is changed

– Returns 0 in rt

Any time a processor intervenes and modifies the value
in memory between the LL and SC instruction, the SC
returns 0 in $t0, causing the code to try again.
i.e. use this value 0 in $t0 to try again.

Load linked: LL rt, offset(rs)

Store conditional: SC rt, offset(rs)
• Succeeds if location not changed since the LL

– Returns 1 in rt
• Fails if location is changed

– Returns 0 in rt

Example: atomic incrementor
i++
↓

LW $t0, 0($s0)
ADDIU $t0, $t0, 1
SW $t0, 0($s0)

LL $t0, 0($s0)
ADDIU $t0, $t0, 1
SC $t0, 0($s0)
BEQZ $t0, try

try:

atomic(i++)
↓

Time
Step

Thread A Thread B Thread A
$t0

Thread B
$t0

Memory
M[$s0]

0 0
1 try: LL $t0, 0($s0) try: LL $t0, 0($s0)
2 ADDIU $t0, $t0, 1 ADDIU $t0, $t0, 1
3 SC $t0, 0($s0) SC $t0, 0 ($s0)
4 BEQZ $t0, try BEQZ $t0, try

Load linked: LL rt, offset(rs)

Store conditional: SC rt, offset(rs)
• Succeeds if location not changed since the LL

– Returns 1 in rt
• Fails if location is changed

– Returns 0 in rt

Example: atomic incrementor

Load linked: LL rt, offset(rs)

Store conditional: SC rt, offset(rs)
• Succeeds if location not changed since the LL

– Returns 1 in rt
• Fails if location is changed

– Returns 0 in rt

Example: atomic incrementor
Time
Step

Thread A Thread B Thread A
$t0

Thread B
$t0

Memory
M[$s0]

0 0
1 try: LL $t0, 0($s0) try: LL $t0, 0($s0) 0 0 0
2 ADDIU $t0, $t0, 1 ADDIU $t0, $t0, 1 1 1 0
3 SC $t0, 0($s0) SC $t0, 0 ($s0) 0 1 1
4 BEQZ $t0, try BEQZ $t0, try 0 1 1

Success!
Failure – try again

Linked load / Store Conditional
m = 0; // m=0 means lock is free; otherwise, if m=1, then lock locked
mutex_lock(int *m) {

while(test_and_set(m)){}
}

int test_and_set(int *m) {
old = *m;
*m = 1;
return old;

}

LL Atomic
SC

Linked load / Store Conditional
m = 0; // m=0 means lock is free; otherwise, if m=1, then lock locked
mutex_lock(int *m) {

while(test_and_set(m)){}
}

int test_and_set(int *m) {
LI $t0, 1
LL $t1, 0($a0)
SC $t0, 0($a0)
MOVE $v0, $t1

}

BEQZ $t0, try

try:

Linked load / Store Conditional
m = 0; // m=0 means lock is free; otherwise, if m=1, then lock locked
mutex_lock(int *m) {

while(test_and_set(m)){}
}

int test_and_set(int *m) {
try:

LI $t0, 1
LL $t1, 0($a0)
SC $t0, 0($a0)
BEQZ $t0, try
MOVE $v0, $t1

}

Linked load / Store Conditional
m = 0; // m=0 means lock is free; otherwise, if m=1, then lock locked
mutex_lock(int *m) {

test_and_set:
LI $t0, 1
LL $t1, 0($a0)
BNEZ $t1, test_and_set
SC $t0, 0($a0)
BEQZ $t0, test_and_set

}

mutex_unlock(int *m) {
*m = 0;

}

Linked load / Store Conditional
m = 0; // m=0 means lock is free; otherwise, if m=1, then lock locked
mutex_lock(int *m) {

test_and_set:
LI $t0, 1
LL $t1, 0($a0)
BNEZ $t1, test_and_set
SC $t0, 0($a0)
BEQZ $t0, test_and_set

}

mutex_unlock(int *m) {
SW $zero, 0($a0)

}

This is called a
Spin lock
Aka spin waiting

Linked load / Store Conditional
m = 0; // m=0 means lock is free; otherwise, if m=1, then lock locked
mutex_lock(int *m) {

Time
Step

Thread A Thread B Thread
A $t0

Thread
A $t1

Thread
B $t0

Thread
B $t1

Mem
M[$a0]

0 0
1 try: LI $t0, 1 try: LI $t0, 1
2 LL $t1, 0($a0) LL $t1, 0($a0)
3 BNEZ $t1, try BNEZ $t1, try
4 SC $t0, 0($a0) SC $t0, 0 ($a0)
5 BEQZ $t0, try BEQZ $t0, try
6

Linked load / Store Conditional
m = 0; // m=0 means lock is free; otherwise, if m=1, then lock locked
mutex_lock(int *m) {

Time
Step

Thread A Thread B Thread
A $t0

Thread
A $t1

Thread
B $t0

Thread
B $t1

Mem
M[$a0]

0 0
1 try: LI $t0, 1 try: LI $t0, 1 1 1 0
2 LL $t1, 0($a0) LL $t1, 0($a0) 1 0 1 0 0
3 BNEZ $t1, try BNEZ $t1, try 1 0 1 0 0
4 SC $t0, 0($a0) SC $t0, 0 ($a0) 0 0 1 0 1
5 BEQZ $t0, try BEQZ $t0, try 0 0 1 0 1
6

Linked load / Store Conditional
m = 0; // m=0 means lock is free; otherwise, if m=1, then lock locked
mutex_lock(int *m) {

Time
Step

Thread A Thread B Thread
A $t0

Thread
A $t1

Thread
B $t0

Thread
B $t1

Mem
M[$a0]

0 0
1 try: LI $t0, 1 try: LI $t0, 1 1 1 0
2 LL $t1, 0($a0) LL $t1, 0($a0) 1 0 1 0 0
3 BNEZ $t1, try BNEZ $t1, try 1 0 1 0 0
4 SC $t0, 0($a0) SC $t0, 0 ($a0) 0 0 1 0 1
5 BEQZ $t0, try BEQZ $t0, try 0 0 1 0 1
6 try: LI $t0, 1 Critical section

Success grabbing mutex lock!
Inside Critical section

Failed to get mutex lock – try again

Linked load / Store Conditional
m = 0; // m=0 means lock is free; otherwise, if m=1, then lock locked
mutex_lock(int *m) {

test_and_set:
LI $t0, 1
LL $t1, 0($a0)
BNEZ $t1, test_and_set
SC $t0, 0($a0)
BEQZ $t0, test_and_set

}

mutex_unlock(int *m) {
SW $zero, 0($a0)

}

This is called a
Spin lock
Aka spin waiting

Linked load / Store Conditional
m = 0;
mutex_lock(int *m) {

Time
Step

Thread A Thread B Thread
A $t0

Thread
A $t1

Thread
B $t0

Thread
B $t1

Mem
M[$a0]

0 1
1 try: LI $t0, 1 try: LI $t0, 1
2
3
4
5
6
7
8
9

Linked load / Store Conditional
m = 0;
mutex_lock(int *m) {

Time
Step

Thread A Thread B Thread
A $t0

Thread
A $t1

Thread
B $t0

Thread
B $t1

Mem
M[$a0]

0 1
1 try: LI $t0, 1 try: LI $t0, 1 1 1 1
2 LL $t1, 0($a0) LL $t1, 0($a0) 1 1 1 1 1
3 BNEZ $t1, try BNEZ $t1, try 1 1 1 1 1
4 try: LI $t0, 1 try: LI $t0, 1 1 1 1 1 1
5 LL $t1, 0($a0) LL $t1, 0($a0) 1 1 1 1 1
6 BNEZ $t1, try BNEZ $t1, try 1 1 1 1 1
7 try: LI $t0, 1 try: LI $t0, 1 1 1 1 1 1
8 LL $t1, 0($a0) LL $t1, 0($a0) 1 1 1 1 1
9 BNEZ $t1, try BNEZ $t1, try 1 1 1 1 1

Thread A Thread B
for(int i = 0, i < 5; i++) { for(int j = 0; j < 5; j++) {

x = x + 1; x = x + 1;

} }

mutex_lock(m); mutex_lock(m);

mutex_unlock(m); mutex_unlock(m);

Other atomic hardware primitives
- test and set (x86)
- atomic increment (x86)
- bus lock prefix (x86)
- compare and exchange (x86, ARM deprecated)
- linked load / store conditional
(MIPS, ARM, PowerPC, DEC Alpha, …)

Synchronization techniques
clever code

• must work despite adversarial scheduler/interrupts
• used by: hackers
• also: noobs

disable interrupts
• used by: exception handler, scheduler, device drivers, …

disable preemption
• dangerous for user code, but okay for some kernel code

mutual exclusion locks (mutex)
• general purpose, except for some interrupt-related cases

Need parallel abstractions, especially for multicore

Writing correct programs is hard
Need to prevent data races

Need critical sections to prevent data races
Mutex, mutual exclusion, implements critical section
Mutex often implemented using a lock abstraction

Hardware provides synchronization primitives such as LL
and SC (load linked and store conditional) instructions to
efficiently implement locks

How do we use synchronization primitives to build
concurrency-safe data structure?

Access to shared data must be synchronized
• goal: enforce datastructure invariants

// invariant:
// data is in A[h … t-1]
char A[100];
int h = 0, t = 0;

// producer: add to list tail
void put(char c) {

A[t] = c;
t = (t+1)%n;

}

1 2 3

head tail

Access to shared data must be synchronized
• goal: enforce datastructure invariants

// invariant:
// data is in A[h … t-1]
char A[100];
int h = 0, t = 0;

// producer: add to list tail
void put(char c) {

A[t] = c;
t = (t+1)%n;

}

// consumer: take from list head
char get() {

while (h == t) { };
char c = A[h];
h = (h+1)%n;
return c;

}

1 2 3 4

head tail

Access to shared data must be synchronized
• goal: enforce datastructure invariants

// invariant:
// data is in A[h … t-1]
char A[100];
int h = 0, t = 0;

// producer: add to list tail
void put(char c) {

A[t] = c;
t = (t+1)%n;

}

// consumer: take from list head
char get() {

while (h == t) { };
char c = A[h];
h = (h+1)%n;
return c;

}

2 3 4

head tail

What is wrong with code?
a) Will lose update to t and/or h
b) Invariant is not upheld
c) Will produce if full
d) Will consume if empty
e) All of the above

Access to shared data must be synchronized
• goal: enforce datastructure invariants

// invariant:
// data is in A[h … t-1]
char A[100];
int h = 0, t = 0;

// producer: add to list tail
void put(char c) {

A[t] = c;
t = (t+1)%n;

}

// consumer: take from list head
char get() {

while (h == t) { };
char c = A[h];
h = (h+1)%n;
return c;

}

2 3 4

head tail

Error: could miss an update to t or h due to lack of synchronization
Current implementation will break invariant:

only produce if not full and only consume if not empty
Need to synchronize access to shared data

Rule of thumb: all access and updates that can affect
invariant become critical sections

// invariant: (protected by mutex m)
// data is in A[h … t-1]
pthread_mutex_t *m = pthread_mutex_create();
char A[100];
int h = 0, t = 0;

// producer: add to list tail
void put(char c) {

pthread_mutex_lock(m);
A[t] = c;
t = (t+1)%n;
pthread_mutex_unlock(m);

}

// consumer: take from list head
char get() {

pthread_mutex_lock(m);
while(h == t) {}
char c = A[h];
h = (h+1)%n;
pthread_mutex_unlock(m);
return c;

}

Rule of thumb: all access and updates that can affect
invariant become critical sections

// invariant: (protected by mutex m)
// data is in A[h … t-1]
pthread_mutex_t *m = pthread_mutex_create();
char A[100];
int h = 0, t = 0;

// producer: add to list tail
void put(char c) {

pthread_mutex_lock(m);
A[t] = c;
t = (t+1)%n;
pthread_mutex_unlock(m);

}

// consumer: take from list head
char get() {

pthread_mutex_lock(m);
while(h == t) {}
char c = A[h];
h = (h+1)%n;
pthread_mutex_unlock(m);
return c;

}

BUG: Can’t wait while holding lock

Insufficient locking can cause races
• Skimping on mutexes? Just say no!

Poorly designed locking can cause deadlock

• know why you are using mutexes!
• acquire locks in a consistent order to avoid cycles
• use lock/unlock like braces (match them lexically)

– lock(&m); …; unlock(&m)
– watch out for return, goto, and function calls!
– watch out for exception/error conditions!

P1: lock(m1);
lock(m2);

P2: lock(m2);
lock(m1);

Circular
Wait

Writers must check for full buffer
& Readers must check for empty buffer

• ideal: don’t busy wait… go to sleep instead

char get() {
acquire(L);
char c = A[h];
h = (h+1)%n;
release(L);
return c;

}

head

last==head

empty

while(empty) {}

Writers must check for full buffer
& Readers must check if for empty buffer

• ideal: don’t busy wait… go to sleep instead

char get() {
acquire(L);
char c = A[h];
h = (h+1)%n;
release(L);
return c;

}

char get() {
acquire(L);
while (h == t) { };
char c = A[h];
h = (h+1)%n;
release(L);
return c;

}

Dilemma: Have to check while holding lock,

char get() {
while (h == t) { };
acquire(L);
char c = A[h];
h = (h+1)%n;
release(L);
return c;

}

head
last==head

empty

Cannot check condition while
Holding the lock,
BUT, empty condition may no
longer hold in critical section

Writers must check for full buffer
& Readers must check if for empty buffer

• ideal: don’t busy wait… go to sleep instead

char get() {
acquire(L);
char c = A[h];
h++;
release(L);
return c;

}

char get() {
acquire(L);
while (h == t) { };
char c = A[h];
h = (h+1)%n;
release(L);
return c;

}

Dilemma: Have to check while holding lock,
but cannot wait while hold lock

Writers must check for full buffer
& Readers must check if for empty buffer

• ideal: don’t busy wait… go to sleep instead
char get() {
do {

acquire(L);
empty = (h == t);
if (!empty) {

c = A[h];
h = (h+1)%n;

}
release(L);

} while (empty);
return c;

}

Does this work?
a) Yes
b) no

Writers must check for full buffer
& Readers must check if for empty buffer

• ideal: don’t busy wait… go to sleep instead
char get() {
do {

acquire(L);
empty = (h == t);
if (!empty) {

c = A[h];
h = (h+1)%n;

}
release(L);

} while (empty);
return c;

}

It works.
But, it is wasteful
Due to the spinning

Language-level Synchronization

Use [Hoare] a condition variable to wait for a condition
to become true (without holding lock!)

wait(m, c) :
• atomically release m and sleep, waiting for condition c
• wake up holding m sometime after c was signaled

signal(c) : wake up one thread waiting on c
broadcast(c) : wake up all threads waiting on c

POSIX (e.g., Linux): pthread_cond_wait,
pthread_cond_signal, pthread_cond_broadcast

wait(m, c) : release m, sleep until c, wake up holding m
signal(c) : wake up one thread waiting on c

char get() {
lock(m);
while (t == h)
wait(m, not_empty);

char c = A[h];
h = (h+1) % n;
unlock(m);
signal(not_full);
return c;

}

cond_t *not_full = ...;
cond_t *not_empty = ...;
mutex_t *m = ...;

void put(char c) {
lock(m);
while ((t-h) % n == 1)
wait(m, not_full);

A[t] = c;
t = (t+1) % n;
unlock(m);
signal(not_empty);

}

A Monitor is a concurrency-safe datastructure,
with…

• one mutex
• some condition variables
• some operations

All operations on monitor acquire/release mutex
• one thread in the monitor at a time

Ring buffer was a monitor
Java, C#, etc., have built-in support for monitors

Java objects can be monitors
• “synchronized” keyword locks/releases the mutex
• Has one (!) builtin condition variable

– o.wait() = wait(o, o)
– o.notify() = signal(o)
– o.notifyAll() = broadcast(o)

• Java wait() can be called even when mutex is not
held. Mutex not held when awoken by signal().
Useful?

Lots of synchronization variations…
(can implement with mutex and condition vars.)
Reader/writer locks

• Any number of threads can hold a read lock
• Only one thread can hold the writer lock

Semaphores
• N threads can hold lock at the same time

Message-passing, sockets, queues, ring buffers, …
• transfer data and synchronize

Hardware Primitives: test-and-set, LL/SC, barrier, ...
… used to build …

Synchronization primitives: mutex, semaphore, ...
… used to build …

Language Constructs: monitors, signals, ...

	Synchronization II
	Announcements
	Announcements
	Cache Coherency and Synchronization Problem
	Cache Coherency and Synchronization Problem
	Programming with Threads
	Goals for Today
	Programming with Threads
	HW support for critical sections
	Mutexes
	Synchronization in MIPS
	Synchronization in MIPS
	Synchronization in MIPS
	Synchronization in MIPS
	Mutex from LL and SC
	Mutex from LL and SC
	Mutex from LL and SC
	Mutex from LL and SC
	Mutex from LL and SC
	Mutex from LL and SC
	Mutex from LL and SC
	Mutex from LL and SC
	Mutex from LL and SC
	Mutex from LL and SC
	Mutex from LL and SC
	Now we can write parallel and correct programs
	Alternative Atomic Instructions
	Synchronization
	Summary
	Next Goal
	Attempt#1: Producer/Consumer
	Attempt#1: Producer/Consumer
	Attempt#1: Producer/Consumer
	Attempt#1: Producer/Consumer
	Attempt#2: Protecting an invariant
	Attempt#2: Protecting an invariant
	Guidelines for successful mutexing
	Attempt#3: Beyond mutexes
	Attempt#3: Beyond mutexes
	Attempt#3: Beyond mutexes
	Attempt#4: Beyond mutexes
	Attempt#4: Beyond mutexes
	Slide Number 43
	Condition variables
	Attempt#5: Using a condition variable
	Monitors
	Java concurrency
	More synchronization mechanisms
	Summary

