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What we’re up against

• eBay manages …
– Over 212,000,000 registered users
– Over 1 Billion photos

– eBay users worldwide trade more than $1590
worth of goods every second

– eBay averages over 1 billion page views per
day

– At any given time, there are approximately
105 million listings on the site

– eBay stores over 2 Petabytes of data – over
200 times the size of the Library of Congress!

– The eBay platform handles 3 billion API calls
per month

• In a dynamic environment
– 300+ features per quarter
– We roll 100,000+ lines of code every two weeks

• In 33 countries, in seven languages, 24x7

>26 Billion SQL executions/day!

An SUV is sold every 5 minutesA sporting good sells every 2 seconds

Over ½ Million pounds of
Kimchi are sold every year!
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eBay’s Exponential Growth

212
Million
Users

1999 2000 2001 2002 20031998 2004 2005

105
Million
Listings

2006
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Velocity of eBay -- Software Development Process

• Our site is our product.  We change it incrementally through implementing new features.

• Very predictable development process – trains leave on-time at regular intervals (weekly).

• Parallel development process with significant output -- 100,000 LOC per release.

• Always on – over 99.94% available.

Feature

Feature

Feature Train

6M LOC100K LOC/Wk

99.94%

212M Users

300+ Features
Per Quarter

All while supporting a 24x7 environment
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Systemic Requirements

Maintainability
Faster Product

Delivery

Enable rapid business innovation

Enable seamless growth

Deliver quality functionality at
accelerating rates

Architect for the
future

10X Growth

Availability
Reliability

Massive Scalability
Security
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Architectural Lessons

• Scale Out, Not Up
– Horizontal scaling at every tier.
– Functional decomposition.

• Prefer Asynchronous Integration
– Minimize availability coupling.
– Improve scaling options.

• Virtualize Components
– Reduce physical dependencies.
– Improve deployment flexibility.

• Design for Failure
– Automated failure detection and notification.
– “Limp mode” operation of business features.
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1998 1999 2000 2001 2002 2003 2004 2005 Q3 

2006

Ongoing Platform Evolution…

V1

V2.0 V2.4

V3

V2.3

eBay architecture versions

Registered Users 212M

V4
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V1.0 1995-September 1997

•  Built over a weekend in Pierre Omidyar’s living room in 1995
•  System hardware was made up of parts that could be bought at Fry's
•  Every item was a separate file, generated by a Perl script
•  No search functionality, only category browsing

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

This system maxed out at 50,000 active items
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V2.0 September 1997- February 1999

• 3-tiered conceptual architecture (separation of bus/pres and db access tiers)
• 2-tiered physical implementation (no application server)
• C++ Library (eBayISAPI.dll) running on IIS on Windows
• Microsoft index server used for search
• Items migrated from GDBM to an Oracle database on Solaris

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
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V2.1 February 1999-November 1999

• Servers grouped into pools (small soldiers)
• Resonate used for front end load balancing and failover
• Search functionality moved to the Thunderstone indexing system
• Back-end Oracle database server scaled vertically to a larger machine (Sun E10000)

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
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V2.3 June 1999-November 1999

• Second Database added for failover
• CGI pools, Listings, Pages, and Search continued to scale horizontally

However …

By November 1999, the database servers approached their limits of physical growth.
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V2.4 November 1999-April 2001

• Database "split" technology.
• Logically partition database into separate instances.
• Horizontal scalability through 2000, but not beyond.
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V2.5 April 2001 – December 2002

Bear

SUN

A3500

Bull

SUN

A3500

SUN

A3500

November, 1999December, 2002

ACCOUNTS FEEDBACK ARCHIVE

CATY 1 CATY 2 CATY 3 CATY 4

BATCH JOBS

CATY 5 CATY 6 CATY 7 CATY 8

CATY 12CATY 11CATY 10CATY 9

User Write User Read

Tran

Scratch

BATCH JOBS

• Horizontal scalability through database splits
• Items split by category
• SPOF elimination
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Now that we have the Database taken care of….

• Application Server
– Monolithic 2-tier Architecture
– 3.3 Million Line C++ ISAPI DLL (150MB binary)
– Hundreds of developers, all working on the same code
– Hitting compiler limits on number of methods per class (!!)
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V3 – Replace C++/ISAPI with Java  2002-present

• Re-wrote the entire application in J2EE application server framework
– Gave us a chance to architect the code for reuse and separation of duties

• Leveraged the MSXML framework for the presentation layer
– Minimizing the development cost for migration

• Implemented a development kernel as a foundation for programmers
– Allowed for rapid training and deployment of new engineers
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Scaling the Data Tier: Overview

• Spread the Load
– Segmentation by function.
– Horizontal splits within functions.

• Minimize the Work
– Limit in database work

• The Tricks to Scaling
– How to survive without transactions.
– Creating alternate database structures.
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Scaling the Data Tier:  Functional Segmentation

• Segment databases into functional areas
– User hosts
– Item hosts
– Account hosts
– Feedback hosts
– Transaction hosts
– And about 70 more functional categories

• Rationale
– Partitions data by different scaling / usage characteristics
– Supports functional decoupling and isolationeB
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Scaling the Data Tier:  Horizontal Split

• Split databases horizontally by primary access path.

• Different patterns for different use cases
– Write Master/Read Slaves
– Segmentation by data; Two approaches

• Modulo on a key, typically the primary key.
Simple data location if you know the key

Not so simple if you don’t.

• Map to data location
Supports multiple keys.

Doubles reads required to locate data.

SPOF elimination on map structure is complex.

• Rationale
– Horizontal scaling of transactional load.
– Segment business impact on database outage.
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Scaling the Data Tier:  Logical Database Hosts

DB2 DB3DB1

Application Servers

Attributes Catalogs Rules CATY
1..N       User Account Feedback Misc API SCRATCH

• Separate Application notion of a database from physical implementation
• Databases may be combined and separated with no code changes
• Reduce cost of creating multiple environments (Dev, QA, …)
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Scaling the Data Tier:  Minimize DB Resources

• No business logic in database
– No stored procedures
– Only very simple triggers (default value population)

• Move CPU-intensive work to applications
– Referential Integrity
– Joins
– Sorting

• Extensive use of prepared statements and bind variables
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Scaling the Data Tier:  Minimize DB Transactions

• Auto-commit for vast majority of DB writes

• Absolutely no client side transactions
– Single database transactions managed through anonymous PL/SQL blocks.
– No distributed transactions.

• How do we pull it off?
– Careful ordering of DB operations
– Recovery through

• Asynchronous recovery events
• Reconciliation batch
• Failover to async flow

• Rationale
– Avoid deadlocks
– Avoid coupling availability
– Update concurrency
– Seamless handling of splits
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Scaling the Application Tier – Overview

• Spread the Load
– Segmentation by function.
– Horizontal load-balancing within functions.

• Minimize dependencies
– Between applications
– Between functional areas
– From applications to data tier resources

• Virtualize data access
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Scaling the Application Tier – Massively Scaling J2EE

• Step 1 - Throw out most of J2EE
– eBay scales on servlets and a rewritten connection pool.

• Step 2 – Keep Application Tier Completely Stateless
– No session state in application tier
– Transient state maintained in cookie or scratch database

• Step 3 – Cache Where Possible
– Cache common metadata across requests, with sophisticated cache refresh

procedures
– Cache reload from local storage
– Cache request data in ThreadLocaleB
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Scaling the Application Tier – Tiered Application Model

BO/BOF

AO/AOF (View)

Business Logic

XML Model
Building Logic

Command (View)

DO/DAO

XSL

Business Tier

Presentation Tier

Integration Tier Data Access Layer (DAL)

• Strictly partition application into tiers
•Presentation
•Business
•Integration
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Scaling the Application Tier – Data Access Layer (DAL)

• What is the DAL?
– eBay’s internally-developed pure Java OR mapping solution.
– All CRUD (Create Read Update Delete) operations are performed

through DAL’s abstraction of the data.
– Enables horizontal scaling of the Data tier without application code

changes

• Dynamic Data Routing abstracts application developers from
– Database splits
– Logical / Physical Hosts
– Markdown
– Graceful degradation

• Extensive JDBC Prepared Statements cached by DataSources
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Scaling the Application Tier – Vertical Code Partitioning

• Partition code into functional areas
• Application is specific to a single area (Selling, Buying, etc.)
• Domain contains common business logic across Applications

• Restrict inter-dependencies
• Applications depend on Domains, not on other Applications
• No dependencies among shared Domains

Core-Domain

PersonalizationDomain

LookupDomain

UserValidationDomain SharedBillingDomain

SharedSearchDomain

API Domain

SharedBuyingDomain myEbayDomain

UserApplication

BuyingDomain BillingDomain SearchDomainSellingDomainUserDomain

SellingApplication BuyingApplication SearchApplicationBillingApplication

Applications

Shared
Domains
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Scaling the Application Tier – Functional Segmentation

IIS IIS

ViewItem Pool
http://cgi.ebay.com …

… …

User Acct Caty20+Caty1

AppServers

…

AS

IIS IIS

    CGI0     CGI5

AS ASAS ASAS

SYI Pool
http://cgi5.ebay.com …

IIS WebServers

Load Balancing

Load Balancing

Load Balancing

• Segment functions into separate application pools
• Minimizes / isolates DB dependencies
• Allows for parallel development, deployment, and monitoring
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Scaling the Application Tier – Platform Decoupling

• Domain Partitioning for Deployment
– Decouple non-transactional domains from transactional flows

• Search and billing domains are not required in transaction processing.
• Fraud domain is required but easier to manage as separate deployment.

– Integrate with a combination of asynchronous EDA and synchronous SOA
patterns.

Transaction
Platform

Billing Search Fraud
E

D
A

E
D

A

S
O
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Scaling Search – Overview

• In 2002, eBay search had reached its limits
– Cost of scaling third-party search engine had become prohibitive
– 9 hours to update the index
– Running on largest systems vendor sold – and still not keeping up

• eBay has unique search requirements
– Real-time updates

• Update item on any change (list, bid, sale, etc.)
• Users expect changes to be visible immediately

– Exhaustive recall
• Sellers notice if search results miss any item
• Search results require data (“histograms”) from every matching item

– Flexible data storage
• Keywords
• Structured categories and attributes

• No off-the-shelf product met these needs
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Scaling Search – Voyager

• Real-time feeder infrastructure
– Reliable multicast from primary database to search nodes

• Real-time indexing
– Search nodes update index in real time from messages

• In-memory search index

• Horizontal segmentation
– Search index divided into N slices (“columns”)
– Each slice is replicated to M instances (“rows”)
– Aggregator parallelizes query over all N slices, load-balances over M

instances

• Caching
– Cache results for highly expensive and frequently used queries
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Scaling Operations – Code Deployment

• Demanding Requirements
– Entire site rolled every 2 weeks
– All deployments require staged rollout with immediate rollback if necessary.
– More than 100 WAR configurations.
– Dependencies exist between pools during some deployment operations.
– More than 15,000 instances across eight physical data centers.

• Rollout Plan
– Custom application that works from dependencies provided by projects.
– Creates transitive closure of dependencies.
– Generates rollout plan for Turbo Roller.

• Automated Rollout Tool (“Turbo Roller”)
– Manages full deployment cycle onto all application servers.
– Executes rollout plan.
– Built in checkpoints during rollout, including approvals.
– Optimized rollback, including full rollback of dependent pools.
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Scaling Operations – Monitoring

• Centralized Activity Logging (CAL)
– Transaction oriented logging per application server

• Transaction boundary starts at request. Nested transactions supported.

• Detailed logging of all application activity, especially database and other external
resources.

• Application generated information and exceptions can be reported.
– Logging streams gathered and broadcast on a message bus.

• Subscriber to log to files (1.5TB/day)

• Subscriber to capture exceptions and generate operational alerts.

• Subscriber for real time application state monitoring.

– Extensive Reporting
• Reports on transactions (page and database) per pool.

• Relationships between URL’s and external resources.

• Inverted relationships between databases and pools/URL’s.

• Data cube reporting on several key metrics available in near real time.
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Recap

Enabling seamless growth

• Massive Database and Code Scalability

Delivering quality functionality at
accelerating rates

• Further streamline and optimize the eBay
development model

Enabling rapid business innovation

Maintainability
Faster Product

Delivery

Architecting for
the future

10X Growth

Availability
Reliability

Massive Scalability
Security
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