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Announcements

« PA2

— Logisim seems to be erratic
= New library will help some (with incrementer)

— Don’t use incrementer 4 times

= What do we know about addresses and their
alignment?

— Can do delay slot or not for top 4 bits
» Tell us what it is
= Will fix in PA 3
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data
memory

Examples

A[12] = h + A[8]

lw, $t0, 32($s3)
add $t0, $s2, $t0
sw $t0, 48($s3)
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High-lewel swaptint w[], int kI

language {int temp:
program v
{in ©) \
wlk+l] = temp;

]

| Compiler |
Assambly sWap:
language muli $2, $5.4
program add $2, $4.42
{for MIPS) Tw 415, 0042)

T $16, 4042)
s $16, 0042)
s 415, 4042)
ir 41l

(" Assembler )

|

Binary machine  00000000101000010000000000011000

language 00000000000110000001100000100001
program 10001100011000100000000000000000
(for MIPS) 10001100111100100000000000000100

10101100111100100000000000000000
10101100011000100000000000000100
10000011111000000000000000001000
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FIGURE A.1.1 The process that produces an executable file. An assembler translates a file of
assembly language into an object file, which is linked with other files and libraries into an executable file.
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Assembler

» Translates text assembly language to
binary machine code

 Input: a text file containing MIPS
instructions in human readable form

» Output: an object file (.o file in Unix, .obj in
Windows) containing MIPS instructions in
executable form
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Assembly Language Instructions

* Arithmetic
— ADD, ADDU, SUB, SUBU, AND, OR, XOR, NOR, SLT, SLTU

— ADDI, ADDIU, ANDI, ORI, XORI, LUI, SLL, SRL, SLLV, SRLYV,
SRAV, SLTI, SLTIU

— MULT, DIV, MFLO, MTLO, MFHI, MTHI
Control Flow
— BEQ, BNE, BLEZ, BLTZ, BGEZ, BGTZ
- J,JR, JAL, JALR, BLTZAL, BGEZAL
Memory
— LW, LH, LB, LHU, LBU
— SW, SH, SB
e Special
— LL, SC, SYSCALL, BREAK, SYNC, COPROC
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Assembly Language

» Assembly language is used to specify
programs at a low-level

« Will | program in assembly?
— | did, for kernel hacking

— For performance (though compilers are
getting better)

— For highly time critical sections
— For hardware without high level languages
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Example: GPU Phong Shader

* Want to compute
—out =N.L + (R.L)™n
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Example: GPU Phong Shader

ADD RO, c[3], -v[OPOS]  // L-P

« DP3 R1, RO, RO I ||L-P||*2
« RSQR2,RLW 11 1||L-P]|
« MUL RO, RO, R2 /IRO =L

DP3 R3, RO, V[NRML] /IR3=N.L

/I Compute E
DP3 R7, R4, vVINRML] /l E.N

« MUL R7, R7, c[6] /12 (E.N)

« MAD R8, R7, V[NRML], -R4 // 2 (E.N)N-E
« DP3R9, R8, RO /I R.L

+ LOG R10, R9.x /I LOG (R.L)
« MULRSY, c[5]x,R10.z /I n*(LOG(R.L))

EXP R11, R9.z I (R.LY*n
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Assembly Language

« Assembly language is used to specify
programs at a low-level

* What does a program consist of?
— MIPS instructions
— Program data (strings, variables, etc)
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Program Layout

* Programs consist of
segments used for different
purposes
— Text: holds instructions data

— Data: holds statically allocated
program data such as

variables, strings, etc. text
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“cornell cs”
13
25

add r1,r2,r3
orir2, r4, 3

When you run the program

TEF e,
Stack segment

l
T

Dynamic data
=TT == Data segment
Static data

10000000,
Text segment

400000, e
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Assembling Programs

text : .

et main * Programs consist of a mix of
main: la $4, Larray instructions, pseudo-ops

li $5, 15 and assembler directives

li$4,0

jal exit » Assembler lays out binary

:Z’;fama‘” values in memory based on

directives

Larray:
long 51, 491, 3991
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Example pseudo-ops

e blt = slt and bne
— blt $s3, $s4, label
Equivalent to
— slt $at, $s3, $s4
— bne $at, $zero, label

» Use register $at (assembler temporary) to
compile this
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Examples

» gcc =S helloWorld.c

e gcc —S add1To100.c

e gcc —S add1To100Sq.c
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addiu $29, $29, -32
Sw $31, 20(%29)
sSw $4, 32(3%29)
Sw $5, 36(%29)
Sw $0, 24(3%29)
SwW $0, 28(%29)
Tw $14, 28(%29)
Tw $24, 24(%29)
multu $14, $14
addiu $8, 3§14, 1
s1ti $1, $8, 101
Sw $8, 28(%29)
mflo $15

addu $25, $24, %15
bne $1, $0, -9
Sw $25, 24(%29)
Tui $4, 4096

Tw $5, 24(3%29)
jal 1048812

addiu $4, $4, 1072
Tw $31, 20(%29)
addiu $29, $29, 32
jr $31

move $2, %0




Sum 1 to 100 Square

#include <stdio.h>
int main (int argc, char* argv(]) {

int count = O;

inti=0;

for (i=0; i< 100; i++) { count +=i*i; }

printf ("The sum from 0 .. 100 is %d\n", count);
}
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MIPS Reqgisters

» Return address: $31 (ra)
 Stack pointer: $29 (sp)
« First four arguments: $4-$7 (a0-a3)
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. .align 2 R

.globl main

main:
subu fsp, $sp, 32
SW fra, 20(%sp)
sd $a0, 22(3%sp)
SW 0, 24(3sp)
SW 0, 28(3%sp)

lToop:
Tw Lo, 28(3spl
mul §t7, $to, §to
Tw L8, 24(3spl
addu §tO, $t8, §t7
SW $t9, 24(%sp)
addu $t0, $to, 1
sW §t0, 28(3sp)
ble $t0, 100, Tloop
la $al, str
Tw fal, 24(3sp)
Jal printf
move $v0, $0
Tw $ra, 20(3sp)
addu $sp, $sp. 32
jr fra
.data
Lalign 0

str
.asciiz "The sum from O .. 100 is %din"

References

» Global labels
— External: can be referenced from outside

— In example
* Main

e Local labels
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Object File Generation

» A program is made up of code and data
from several object files

» Each object file is generated independently

» Assembler starts at some PC address, e.g.
0, in each object file, generates code as if
the program were laid out starting out at
location 0x0

* |t also generates a symbol table, and a
relocation table
—In case the segments need to be moved
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Object file

Header

— Size and position of pieces of file
Text Segment

— instructions

Data Segment

— Static data

Relocation Information

— Instructions and data that depend on absolute
addresses

Symbol Table
— External and unresolved references
Debugging Information
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Forward References

e Local labels can have forward references

» Two-pass assembly

— Do a pass through the whole program,
allocate instructions and lay out data, thus
determining addresses

— Do a second pass, emitting instructions and
data, with the correct label offsets now
determined
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Forward References

» One-pass (or backpatch) assembly

— Do a pass through the whole program, emitting
instructions, emit a 0 for jumps to labels not yet
determined, keep track of where these instructions
are

— Backpatch, fill in O offsets as labels are defined

e Pros and cons
— Faster
— But need to hold whole program in memory
— Have to do largest branch possible
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Handling Forward References

» Example:

— bne$l, $2,L
sll $0, $0, O
L: addiu $2, $3, 0x2

* The assembler will change this to

— bne %1, $2, +1
sll $0, $0, O
addiu $7, $8, $9
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Handling Forward References

e Final machine code

— 0X14220001 # bne
0x00000000 # sl
0x24620002 # addiu
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From Assembly to Running

™

| Assambly language program

N

'Otuject: Machine language medules | |Object: Library routine (maching Ianguagej-.

g
AN

Executable: Machine language program

N
N

Mermaory
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Separate Compilation

» Separately compiling modules and linking
them together removes the need to
recompile the whole program every time
something changes

* Need to just recompile a small module

» A linker coalesces object files together to
create a complete program
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Linker

Obiject file
sub:
Obiject file Executable file
Instructions | main: main:
jal 227 jal printf
jal 227 jal sub
i printf:
S call, sub > Linker .
el call, printf
records
L sub:
C library
print:
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Linkers

« Combine object files into an executable
— Resolve symbols
— Creates final executable

— Stores entry point in executable so processor
knows where to start executing

* End result: a program on disk, ready to
execute
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Dbjest file header

Teat size 100,

Dt zize e[
Taxt cagment Addrass Instruction
[ Tw §a0, O0igp
4 jal
Data s=gmerk 1
Relecation mfommation Addrass Instruction type Deperdency
[] Tw
4 jal E
Symibol table Label Addrezz
Dbjest file header
Marme Procedure B
Teat size 200,
Dt size Al
Taxt cagment Addrass Instruction
4] s §al, Oligp)
4 jal
Datas s=grmrk {1
Relecation mfommation Address Instruction type Dreperd=ncy
[:] T ¥
4 jal
Symibol table Label Addrezz

When you run the program

7HH ffc,,

10000000,

hex

400000,.,

Dynamic data
Static data

Reserved

* jal are easy

Sackseament o gp will be explained
next time

Data segment

Text segment
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jal addresses

Executable file header
Text size 300}
Data size 506
Text segment Address Instruction
0040 0000, Twal, 8000, ($gp)
0040 0004, Jjal 40 0100,
0040 0100, swhal, 8020, (fagp)
0040 0104, jal 40 0000,
Data segment Address
1000 0000, (xJ
1000 00204, (Y
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Linkers

o Static linkers
— Doesn’t reflect changes
—Whole library (big)

e Dynamic linkers
— Dynamically linked libraries (dlIs)

— Integrate code at runtime
= One copy of shared library in memory
= But linked it all, so still quite large
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Linkers

* Dynamic linkers [Fea ]
- ! o
— Dynamically N »
linked libraries i a
(dils) ED
- ._| - ._|
— Lazy | EE— E—
[von]
11 ey
[1ee
Dynamic linkerloadar
Remap DLL routing
i [e]
Data/Taxt M
I.J.L.L routing o P.L.L routing
i [&h i [&h
Kavita Bala, Corr_m] First call to DLL routine . ib) Subsequent calls to DLL routine
Loaders

Reads executable from disk

Loads code and data into memory
Initializes registers, stack, arguments
Jumps to entry-point

Part of the Operating System (OS)
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