CS 316:
MIPS Assembler

Kavita Bala
Fall 2007
Computer Science
Cornell University

Announcements

« PA2

— Logisim seems to be erratic
= New library will help some (with incrementer)

— Don’t use incrementer 4 times

= What do we know about addresses and their
alignment?

— Can do delay slot or not for top 4 bits
» Tell us what it is
= Will fix in PA 3

Kavita Bala, Computer Science, Cornell University

Branch

[=2<=07 |

addr

din

[

d out

L)
inst N -
memory register file
3) 11 /
2 12 1]
5 B| : B
00 116 sign j
~d extepd
pe NS e)
new pc control

calculation]
| |.—

Kavita Bala, Computer Science, Cornell University

data
memory

Examples

A[12] = h + A[8]

lw, $t0, 32($s3)
add $t0, $s2, $t0
sw $t0, 48($s3)

Kavita Bala, Computer Science, Cornell University

High-lewel swaptint w[], int kI

language {int temp:
program v
{in ©) \
wlk+l] = temp;

]

| Compiler |
Assambly sWap:
language muli $2, $5.4
program add $2, $4.42
{for MIPS) Tw 415, 0042)

T $16, 4042)
s $16, 0042)
s 415, 4042)
ir 41l

(" Assembler)

|

Binary machine 00000000101000010000000000011000

language 00000000000110000001100000100001
program 10001100011000100000000000000000
(for MIPS) 10001100111100100000000000000100

10101100111100100000000000000000
10101100011000100000000000000100
10000011111000000000000000001000

T T—
Source Object
file ’ file u
o~ | |
T T— T T
Source Object i . Executable
fle [T file >| Linker = fje
L — | b | —
T T
Source Object Program
file ’ file i, library
L | |

FIGURE A.1.1 The process that produces an executable file. An assembler translates a file of
assembly language into an object file, which is linked with other files and libraries into an executable file.

Kavita Bala, Computer Science, Cornell University

Assembler

» Translates text assembly language to
binary machine code

 Input: a text file containing MIPS
instructions in human readable form

» Output: an object file (.o file in Unix, .obj in
Windows) containing MIPS instructions in
executable form

Kavita Bala, Computer Science, Cornell University

Assembly Language Instructions

* Arithmetic
— ADD, ADDU, SUB, SUBU, AND, OR, XOR, NOR, SLT, SLTU

— ADDI, ADDIU, ANDI, ORI, XORI, LUI, SLL, SRL, SLLV, SRLYV,
SRAV, SLTI, SLTIU

— MULT, DIV, MFLO, MTLO, MFHI, MTHI
Control Flow
— BEQ, BNE, BLEZ, BLTZ, BGEZ, BGTZ
- J,JR, JAL, JALR, BLTZAL, BGEZAL
Memory
— LW, LH, LB, LHU, LBU
— SW, SH, SB
e Special
— LL, SC, SYSCALL, BREAK, SYNC, COPROC

Kavita Bala, Computer Science, Cornell University

Assembly Language

» Assembly language is used to specify
programs at a low-level

« Will | program in assembly?
— | did, for kernel hacking

— For performance (though compilers are
getting better)

— For highly time critical sections
— For hardware without high level languages

Kavita Bala, Computer Science, Cornell University

Example: GPU Phong Shader

* Want to compute
—out =N.L + (R.L)™n

Kavita Bala, Computer Science, Cornell University

Example: GPU Phong Shader

ADD RO, c[3], -v[OPOS] // L-P

« DP3 R1, RO, RO I ||L-P||*2
« RSQR2,RLW 11 1||L-P]|
« MUL RO, RO, R2 /IRO =L

DP3 R3, RO, V[NRML] /IR3=N.L

/I Compute E
DP3 R7, R4, vVINRML] /l E.N

« MUL R7, R7, c[6] /12 (E.N)

« MAD R8, R7, V[NRML], -R4 // 2 (E.N)N-E
« DP3R9, R8, RO /I R.L

+ LOG R10, R9.x /I LOG (R.L)
« MULRSY, c[5]x,R10.z /I n*(LOG(R.L))

EXP R11, R9.z I (R.LY*n

Kavita Bala, Computer Science, Cornell University

Assembly Language

« Assembly language is used to specify
programs at a low-level

* What does a program consist of?
— MIPS instructions
— Program data (strings, variables, etc)

Kavita Bala, Computer Science, Cornell University

Program Layout

* Programs consist of
segments used for different
purposes
— Text: holds instructions data

— Data: holds statically allocated
program data such as

variables, strings, etc. text

Kavita Bala, Computer Science, Cornell University

“cornell cs”
13
25

add r1,r2,r3
orir2, r4, 3

When you run the program

TEF e,
Stack segment

l
T

Dynamic data
=TT == Data segment
Static data

10000000,
Text segment

400000, e

Kavita Bala, Computer Science, Cornell University

Assembling Programs

text : .

et main * Programs consist of a mix of
main: la $4, Larray instructions, pseudo-ops

li $5, 15 and assembler directives

li$4,0

jal exit » Assembler lays out binary

:Z’;fama‘” values in memory based on

directives

Larray:
long 51, 491, 3991

Kavita Bala, Computer Science, Cornell University

Example pseudo-ops

e blt = slt and bne
— blt $s3, $s4, label
Equivalent to
— slt $at, $s3, $s4
— bne $at, $zero, label

» Use register $at (assembler temporary) to
compile this

Kavita Bala, Computer Science, Cornell University

Examples

» gcc =S helloWorld.c

e gcc —S add1To100.c

e gcc —S add1To100Sq.c

Kavita Bala, Computer Science, Cornell University

addiu $29, $29, -32
Sw $31, 20(%29)
sSw $4, 32(3%29)
Sw $5, 36(%29)
Sw $0, 24(3%29)
SwW $0, 28(%29)
Tw $14, 28(%29)
Tw $24, 24(%29)
multu $14, $14
addiu $8, 3§14, 1
s1ti $1, $8, 101
Sw $8, 28(%29)
mflo $15

addu $25, $24, %15
bne $1, $0, -9
Sw $25, 24(%29)
Tui $4, 4096

Tw $5, 24(3%29)
jal 1048812

addiu $4, $4, 1072
Tw $31, 20(%29)
addiu $29, $29, 32
jr $31

move $2, %0

Sum 1 to 100 Square

#include <stdio.h>
int main (int argc, char* argv(]) {

int count = O;

inti=0;

for (i=0; i< 100; i++) { count +=i*i; }

printf ("The sum from 0 .. 100 is %d\n", count);
}

Kavita Bala, Computer Science, Cornell University

MIPS Reqgisters

» Return address: $31 (ra)
 Stack pointer: $29 (sp)
« First four arguments: $4-$7 (a0-a3)

Kavita Bala, Computer Science, Cornell University

10

. .align 2 R

.globl main

main:
subu fsp, $sp, 32
SW fra, 20(%sp)
sd $a0, 22(3%sp)
SW 0, 24(3sp)
SW 0, 28(3%sp)

lToop:
Tw Lo, 28(3spl
mul §t7, $to, §to
Tw L8, 24(3spl
addu §tO, $t8, §t7
SW $t9, 24(%sp)
addu $t0, $to, 1
sW §t0, 28(3sp)
ble $t0, 100, Tloop
la $al, str
Tw fal, 24(3sp)
Jal printf
move $v0, $0
Tw $ra, 20(3sp)
addu $sp, $sp. 32
jr fra
.data
Lalign 0

str
.asciiz "The sum from O .. 100 is %din"

References

» Global labels
— External: can be referenced from outside

— In example
* Main

e Local labels

Kavita Bala, Computer Science, Cornell University

Object File Generation

» A program is made up of code and data
from several object files

» Each object file is generated independently

» Assembler starts at some PC address, e.g.
0, in each object file, generates code as if
the program were laid out starting out at
location 0x0

* |t also generates a symbol table, and a
relocation table
—In case the segments need to be moved

Kavita Bala, Computer Science, Cornell University

Object file

Header

— Size and position of pieces of file
Text Segment

— instructions

Data Segment

— Static data

Relocation Information

— Instructions and data that depend on absolute
addresses

Symbol Table
— External and unresolved references
Debugging Information

Kavita Bala, Computer Science, Cornell University

12

Forward References

e Local labels can have forward references

» Two-pass assembly

— Do a pass through the whole program,
allocate instructions and lay out data, thus
determining addresses

— Do a second pass, emitting instructions and
data, with the correct label offsets now
determined

Kavita Bala, Computer Science, Cornell University

Forward References

» One-pass (or backpatch) assembly

— Do a pass through the whole program, emitting
instructions, emit a 0 for jumps to labels not yet
determined, keep track of where these instructions
are

— Backpatch, fill in O offsets as labels are defined

e Pros and cons
— Faster
— But need to hold whole program in memory
— Have to do largest branch possible

Kavita Bala, Computer Science, Cornell University

13

Handling Forward References

» Example:

— bne$l, $2,L
sll $0, $0, O
L: addiu $2, $3, 0x2

* The assembler will change this to

— bne %1, $2, +1
sll $0, $0, O
addiu $7, $8, $9

Kavita Bala, Computer Science, Cornell University

Handling Forward References

e Final machine code

— 0X14220001 # bne
0x00000000 # sl
0x24620002 # addiu

Kavita Bala, Computer Science, Cornell University

14

From Assembly to Running

™

| Assambly language program

N

'Otuject: Machine language medules | |Object: Library routine (maching Ianguagej-.

g
AN

Executable: Machine language program

N
N

Mermaory

Kavita Bala, Computer Science, Cornell University

Separate Compilation

» Separately compiling modules and linking
them together removes the need to
recompile the whole program every time
something changes

* Need to just recompile a small module

» A linker coalesces object files together to
create a complete program

Kavita Bala, Computer Science, Cornell University

15

Linker

Obiject file
sub:
Obiject file Executable file
Instructions | main: main:
jal 227 jal printf
jal 227 jal sub
i printf:
S call, sub > Linker .
el call, printf
records
L sub:
C library
print:

Kavita Bala, Computer Science, Cornell University

Linkers

« Combine object files into an executable
— Resolve symbols
— Creates final executable

— Stores entry point in executable so processor
knows where to start executing

* End result: a program on disk, ready to
execute

Kavita Bala, Computer Science, Cornell University

16

Dbjest file header

Teat size 100,

Dt zize e[
Taxt cagment Addrass Instruction
[Tw §a0, O0igp
4 jal
Data s=gmerk 1
Relecation mfommation Addrass Instruction type Deperdency
[] Tw
4 jal E
Symibol table Label Addrezz
Dbjest file header
Marme Procedure B
Teat size 200,
Dt size Al
Taxt cagment Addrass Instruction
4] s §al, Oligp)
4 jal
Datas s=grmrk {1
Relecation mfommation Address Instruction type Dreperd=ncy
[:] T ¥
4 jal
Symibol table Label Addrezz

When you run the program

7HH ffc,,

10000000,

hex

400000,.,

Dynamic data
Static data

Reserved

* jal are easy

Sackseament o gp will be explained
next time

Data segment

Text segment

Kavita Bala, Computer Science, Cornell University

17

jal addresses

Executable file header
Text size 300}
Data size 506
Text segment Address Instruction
0040 0000, Twal, 8000, ($gp)
0040 0004, Jjal 40 0100,
0040 0100, swhal, 8020, (fagp)
0040 0104, jal 40 0000,
Data segment Address
1000 0000, (xJ
1000 00204, (Y

Kavita Bala, Computer Science, Cornell University

Linkers

o Static linkers
— Doesn’t reflect changes
—Whole library (big)

e Dynamic linkers
— Dynamically linked libraries (dlIs)

— Integrate code at runtime
= One copy of shared library in memory
= But linked it all, so still quite large

Kavita Bala, Computer Science, Cornell University

18

Linkers

* Dynamic linkers [Fea]
- ! o
— Dynamically N »
linked libraries i a
(dils) ED
- ._| - ._|
— Lazy | EE— E—
[von]
11 ey
[1ee
Dynamic linkerloadar
Remap DLL routing
i [e]
Data/Taxt M
I.J.L.L routing o P.L.L routing
i [&h i [&h
Kavita Bala, Corr_m] First call to DLL routine . ib) Subsequent calls to DLL routine
Loaders

Reads executable from disk

Loads code and data into memory
Initializes registers, stack, arguments
Jumps to entry-point

Part of the Operating System (OS)

Kavita Bala, Computer Science, Cornell University

19

