
1

CS 316:
MIPS Assembler

Kavita Bala
Fall 2007

Computer Science
Cornell University

Kavita Bala, Computer Science, Cornell University

Announcements

• PA 2
– Logisim seems to be erratic

New library will help some (with incrementer)

– Don’t use incrementer 4 times
What do we know about addresses and their
alignment?

– Can do delay slot or not for top 4 bits
Tell us what it is
Will fix in PA 3

2

Kavita Bala, Computer Science, Cornell University

Branch

memory

inst

32

pc

2

new pc
calculation

register file

control

5 5 5

alu

sign
extend

16
32

data
memory

addr d out

d in

=? <=0?

00

Kavita Bala, Computer Science, Cornell University

Examples

• A[12] = h + A[8]

• lw, $t0, 32($s3)
• add $t0, $s2, $t0
• sw $t0, 48($s3)

3

Kavita Bala, Computer Science, Cornell University

Kavita Bala, Computer Science, Cornell University

4

Kavita Bala, Computer Science, Cornell University

Assembler
• Translates text assembly language to

binary machine code

• Input: a text file containing MIPS
instructions in human readable form

• Output: an object file (.o file in Unix, .obj in
Windows) containing MIPS instructions in
executable form

Kavita Bala, Computer Science, Cornell University

Assembly Language Instructions
• Arithmetic

– ADD, ADDU, SUB, SUBU, AND, OR, XOR, NOR, SLT, SLTU
– ADDI, ADDIU, ANDI, ORI, XORI, LUI, SLL, SRL, SLLV, SRLV,

SRAV, SLTI, SLTIU
– MULT, DIV, MFLO, MTLO, MFHI, MTHI

• Control Flow
– BEQ, BNE, BLEZ, BLTZ, BGEZ, BGTZ
– J, JR, JAL, JALR, BLTZAL, BGEZAL

• Memory
– LW, LH, LB, LHU, LBU
– SW, SH, SB

• Special
– LL, SC, SYSCALL, BREAK, SYNC, COPROC

5

Kavita Bala, Computer Science, Cornell University

Assembly Language

• Assembly language is used to specify
programs at a low-level

• Will I program in assembly?
– I did, for kernel hacking
– For performance (though compilers are

getting better)
– For highly time critical sections
– For hardware without high level languages

Kavita Bala, Computer Science, Cornell University

Example: GPU Phong Shader
• Want to compute

–out = N.L + (R.L)^n

6

Kavita Bala, Computer Science, Cornell University

Example: GPU Phong Shader
• ADD R0, c[3], -v[OPOS] // L-P
• DP3 R1, R0, R0 // ||L-P||^2
• RSQ R2, R1.W // 1/||L-P||
• MUL R0, R0, R2 // R0 = L

• DP3 R3, R0, v[NRML] // R3 = N.L

• …. // Compute E
• DP3 R7, R4, v[NRML] // E.N
• MUL R7, R7, c[6] // 2 (E.N)
• MAD R8, R7, v[NRML], -R4 // 2 (E.N)N-E
• DP3 R9, R8, R0 // R.L
• LOG R10, R9.x // LOG (R.L)
• MUL R9, c[5].x, R10.z // n*(LOG(R.L))
• EXP R11, R9.z // (R.L)^n
• …

Kavita Bala, Computer Science, Cornell University

Assembly Language

• Assembly language is used to specify
programs at a low-level

• What does a program consist of?
– MIPS instructions
– Program data (strings, variables, etc)

7

Kavita Bala, Computer Science, Cornell University

Program Layout

• Programs consist of
segments used for different
purposes
– Text: holds instructions
– Data: holds statically allocated

program data such as
variables, strings, etc. add r1,r2,r3

ori r2, r4, 3
...

“cornell cs”
13
25

data

text

Kavita Bala, Computer Science, Cornell University

When you run the program

8

Kavita Bala, Computer Science, Cornell University

Assembling Programs

• Programs consist of a mix of
instructions, pseudo-ops
and assembler directives

• Assembler lays out binary
values in memory based on
directives

.text

.ent main
main: la $4, Larray

li $5, 15
...
li $4, 0
jal exit
.end main
.data

Larray:
.long 51, 491, 3991

Kavita Bala, Computer Science, Cornell University

Example pseudo-ops

• blt = slt and bne
– blt $s3, $s4, label
Equivalent to
– slt $at, $s3, $s4
– bne $at, $zero, label

• Use register $at (assembler temporary) to
compile this

9

Kavita Bala, Computer Science, Cornell University

Examples

• gcc –S helloWorld.c

• gcc –S add1To100.c

• gcc –S add1To100Sq.c

Kavita Bala, Computer Science, Cornell University

10

Kavita Bala, Computer Science, Cornell University

Sum 1 to 100 Square

#include <stdio.h>

int main (int argc, char* argv[]) {

int count = 0;
int i = 0;
for (i = 0; i < 100; i++) { count += i*i; }
printf ("The sum from 0 .. 100 is %d\n", count);

}

Kavita Bala, Computer Science, Cornell University

MIPS Registers
• Return address: $31 (ra)
• Stack pointer: $29 (sp)
• First four arguments: $4-$7 (a0-a3)

11

Kavita Bala, Computer Science, Cornell University

Kavita Bala, Computer Science, Cornell University

References

• Global labels
– External: can be referenced from outside
– In example

Main

• Local labels

12

Kavita Bala, Computer Science, Cornell University

Object File Generation
• A program is made up of code and data

from several object files
• Each object file is generated independently
• Assembler starts at some PC address, e.g.

0, in each object file, generates code as if
the program were laid out starting out at
location 0x0

• It also generates a symbol table, and a
relocation table
– In case the segments need to be moved

Kavita Bala, Computer Science, Cornell University

Object file
• Header

– Size and position of pieces of file

• Text Segment
– instructions

• Data Segment
– Static data

• Relocation Information
– Instructions and data that depend on absolute

addresses

• Symbol Table
– External and unresolved references

• Debugging Information

13

Kavita Bala, Computer Science, Cornell University

Forward References
• Local labels can have forward references

• Two-pass assembly
– Do a pass through the whole program,

allocate instructions and lay out data, thus
determining addresses

– Do a second pass, emitting instructions and
data, with the correct label offsets now
determined

Kavita Bala, Computer Science, Cornell University

Forward References
• One-pass (or backpatch) assembly

– Do a pass through the whole program, emitting
instructions, emit a 0 for jumps to labels not yet
determined, keep track of where these instructions
are

– Backpatch, fill in 0 offsets as labels are defined

• Pros and cons
– Faster
– But need to hold whole program in memory
– Have to do largest branch possible

14

Kavita Bala, Computer Science, Cornell University

Handling Forward References

• Example:
– bne $1, $2, L

sll $0, $0, 0
L: addiu $2, $3, 0x2

• The assembler will change this to
– bne $1, $2, +1

sll $0, $0, 0
addiu $7, $8, $9

Kavita Bala, Computer Science, Cornell University

Handling Forward References

• Final machine code
– 0X14220001 # bne

0x00000000 # sll
0x24620002 # addiu

15

Kavita Bala, Computer Science, Cornell University

From Assembly to Running

Kavita Bala, Computer Science, Cornell University

Separate Compilation

• Separately compiling modules and linking
them together removes the need to
recompile the whole program every time
something changes

• Need to just recompile a small module
• A linker coalesces object files together to

create a complete program

16

Kavita Bala, Computer Science, Cornell University

Linker

Kavita Bala, Computer Science, Cornell University

Linkers
• Combine object files into an executable

– Resolve symbols
– Creates final executable
– Stores entry point in executable so processor

knows where to start executing

• End result: a program on disk, ready to
execute

17

Kavita Bala, Computer Science, Cornell University

Kavita Bala, Computer Science, Cornell University

• jal are easy

• gp will be explained
next time

When you run the program

18

Kavita Bala, Computer Science, Cornell University

jal addresses

Kavita Bala, Computer Science, Cornell University

Linkers

• Static linkers
– Doesn’t reflect changes
– Whole library (big)

• Dynamic linkers
– Dynamically linked libraries (dlls)
– Integrate code at runtime

One copy of shared library in memory
But linked it all, so still quite large

19

Kavita Bala, Computer Science, Cornell University

Linkers

• Dynamic linkers
– Dynamically

linked libraries
(dlls)

– Lazy

Kavita Bala, Computer Science, Cornell University

Loaders

• Reads executable from disk
• Loads code and data into memory
• Initializes registers, stack, arguments
• Jumps to entry-point
• Part of the Operating System (OS)

