
1

CS 316:
A Full Processor

Kavita Bala
Fall 2007

Computer Science
Cornell University

Kavita Bala, Computer Science, Cornell University

Announcements
• PA 2 is out

• Office Hours
– Will talk about jump and delay slots
– My office hours are canceled today, but I can

meet by appointment
– Section today can handle my office hours

2

Kavita Bala, Computer Science, Cornell University

Instruction Usage

• Instructions are stored
in memory, encoded
in binary

• A basic processor
– fetches
– decodes
– executes

one instruction at a
time

01001001000001010
01001000100000000
10001001100010010

pc

adder

cur inst

decode

regs execute

addr data

Kavita Bala, Computer Science, Cornell University

Instruction Set Architecture
• The types of operations permissible in machine

language define the ISA
– MIPS: load/store, arithmetic, control flow, …
– VAX: load/store, arithmetic, control flow, strings, …
– Cray: vector operations, …

• Two classes of ISAs
– Reduced Instruction Set Computers (RISC)
– Complex Instruction Set Computers (CISC)

• We’ll study the MIPS ISA in this course

3

Kavita Bala, Computer Science, Cornell University

Instructions
• Load/store architecture

– Data must be in registers to be operated on
– Keeps hardware simple

• Emphasis on efficient implementation
• Integer data types:

– byte: 8 bits
– half-words: 16 bits
– words: 32 bits

• MIPS supports signed and unsigned data
types

Kavita Bala, Computer Science, Cornell University

Arithmetic Instructions

• if op == 0 && func == 0x21
– R[rd] = R[rs] + R[rt] (unsigned)

• if op == 0 && func == 0x23
– R[rd] = R[rs] - R[rt] (unsigned)

• if op == 0 && func == 0x25
– R[rd] = R[rs] | R[rt]

funcshamtrdrtrsop
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

4

Kavita Bala, Computer Science, Cornell University

Arithmetic Ops

memory

inst

32

pc

2

00

new pc
calculation

register file

control

5 5 5

alu

Kavita Bala, Computer Science, Cornell University

Arithmetic Instructions (1)

• if op == 0 && func == 0x21
– R[rd] = R[rs] + R[rt]

• if op == 0 && func == 0x23
– R[rd] = R[rs] - R[rt]

• if op == 0 && func == 0x25
– R[rd] = R[rs] | R[rt]

funcshamtrdrtrsop
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

ADD rd, rs, rt
ADDU rd, rs, rt
AND rd, rs, rt
OR rd, rs, rt
NOR rd, rs, rt

5

Kavita Bala, Computer Science, Cornell University

Arithmetic Ops

memory

inst

32

pc

2

00

new pc
calculation

register file

control

5 5 5

alu

Kavita Bala, Computer Science, Cornell University

Arithmetic Instructions (2)

• if op == 8
– R[rd] = R[rs] + sign_extend(immediate)

• if op == 12
– R[rd] = R[rs] & immediate

immediaterdrsop
6 bits 5 bits 5 bits 16 bits

ADDI rd, rs, val
ADDIU rd, rs, val
ANDI rd, rs, val
ORI rd, rs, val

6

Kavita Bala, Computer Science, Cornell University

Sign Extension

• Often need to convert a small (8-bit or
16-bit) signed value to a larger (16-bit or
32-bit) signed value
– “1” in 8 bits: 00000001
– “1” in 16 bits: 0000000000000001
– “-1” in 8 bits: 11111111
– “-1” in 16 bits: 1111111111111111

• Conversion from small to larger numbers
involves replicating the sign bit

Kavita Bala, Computer Science, Cornell University

Arithmetic Ops with Immediates

memory

inst

32

pc

2

00

new pc
calculation

register file

control

5 5 5

alu

mux

sign extend
16

32

7

Kavita Bala, Computer Science, Cornell University

MIPS Instruction Types
• Arithmetic/Logical

– three operands: result + two sources
– operands: registers, 16-bit immediates
– signed and unsigned versions

• Memory Access
– load/store between registers and memory
– half-word and byte operations

• Control flow
– conditional branches: pc-relative addresses
– jumps: fixed offsets

Kavita Bala, Computer Science, Cornell University

MIPS Design Principles
• Simplicity favors regularity

– 32 bit instructions

• Smaller is faster
– Small register file

• Make the common case fast
– Include support for constants

• Good design demands good compromises
– Support for different type of interpretations/classes

8

Kavita Bala, Computer Science, Cornell University

Memory Operations

• lb, lbu, lh, lhu, lw
• sb, sh, sw
• Examples rs = r4 = addr of array; r3 = rd

– lw r3, 0(r4) int array[32]; x = array[0]
– lw r3, 16(r4) int array[32]; x = array[4]

immediaterdrsop
6 bits 5 bits 5 bits 16 bits

Kavita Bala, Computer Science, Cornell University

Load

memory

inst

32

pc

2
00

new pc
calculation

register file

control

5 5 5

alu

sign
extend

16
32

data
memory

addr d out

9

Kavita Bala, Computer Science, Cornell University

Store

memory

inst

32

pc

2

new pc
calculation

register file

control

5 5 5

alu

sign
extend

16
32

data
memory

addr d out

d in00

Kavita Bala, Computer Science, Cornell University

Endianness
• Take a 32-bit hexadecimal value

– e.g. 0x0A0B0C0D
• Store the word at location 0x1000
• Read the byte at location 0x1000

– What do you get?
• Little endian

• Big endian
0D0C0B0A

0A0B0C0D

0x1003 0x1002 0x1001 0x1000

0x1003 0x1002 0x1001 0x1000

10

Kavita Bala, Computer Science, Cornell University

Endianness
• The way the bytes are ordered within a

word generally does not matter
• Except when casting between integral data

types
casting four bytes to an int
casting two bytes to a short
casting two shorts to an int

• Such casting is typically required when
sending data from one host to another
– networks use big-endian representation for ints
– x86’s use little-endian representation for ints

Kavita Bala, Computer Science, Cornell University

Control Flow (Absolute Jump)

• j, jal
• Absolute addressing
• new PC = high 4 bits of current PC || target || 00

– Cannot jump from 0xffff000000000000 to
0x0000100000000000

– Better to make all instructions fit in 32 bits than to
support really large absolute jumps

• Examples
– j L01 goto L01

targetop
6 bits 26 bits

11

Kavita Bala, Computer Science, Cornell University

Absolute Jump

memory

inst

32

pc

2

new pc
calculation

register file

control

5 5 5

alu

sign
extend

16
32

data
memory

addr d out

d in00

Kavita Bala, Computer Science, Cornell University

Control Flow (Jump Register)

• new PC = R[rs]

• Can jump to any address stored in a
register

func000 000 000 000 000rsop
6 bits 5 bits 15 bits 6 bits

12

Kavita Bala, Computer Science, Cornell University

Jump Register

memory

inst

32

pc

2

new pc
calculation

register file

control

5 5 5

alu

sign
extend

16
32

data
memory

addr d out

d in00

Kavita Bala, Computer Science, Cornell University

Control Flow (Branches)

• Some branches depend on the relative
values of two registers

• if op == 4 # BEQ
– if R[rs] == R[rt]

new PC = old PC + sign_extend(immediate << 2)

• BEQ, BNE

immediatertrsop
6 bits 5 bits 5 bits 16 bits

13

Kavita Bala, Computer Science, Cornell University

Branch

memory

inst

32

pc

2

new pc
calculation

register file

control

5 5 5

alu

sign
extend

16
32

data
memory

addr d out

d in

=?

00

Kavita Bala, Computer Science, Cornell University

Control Flow (Branches)

• Some branches depend on the value of a
single register

• if op == 1 && subop == BLTZ
– if R[rs] < 0

new PC = old PC + sign_extend(immediate << 2)

• BGEZ, BGTZ, BLTZ, BLEZ

immediatesuboprsop
6 bits 5 bits 5 bits 16 bits

14

Kavita Bala, Computer Science, Cornell University

Branch

memory

inst

32

pc

2

new pc
calculation

register file

control

5 5 5

alu

sign
extend

16
32

data
memory

addr d out

d in

=? <=0?

00

Kavita Bala, Computer Science, Cornell University

MIPS Addressing Modes
1. Operand: Register addressing

op rs rt rd funct Register
word operand

op rs rd offset
2. Operand: Base addressing

base register

Memory
word or byte operand

15

Kavita Bala, Computer Science, Cornell University

MIPS Addressing Modes
3. Operand: Immediate addressing

op rs rd operand

4. Instruction: PC-relative addressing
op rs rd offset

Program Counter (PC)

Memory
branch destination instruction

5. Instruction: Pseudo-direct addressing
op jump address

Program Counter (PC)

Memory
jump destination instruction||

Kavita Bala, Computer Science, Cornell University

Examples

• A[12] = h + A[8]

• lw, $t0, 32($s3)
• add $t0, $s2, $t0
• sw $t0, 48($s3)

16

Kavita Bala, Computer Science, Cornell University

Example
• if (i == j) f = g + h else f = g – h

• bne $s3, $s4, Else
• add $s0, $s1, $s2
• j Exit
• nop
• Else: sub $s0, $s1, $s2
• nop
• Exit:

Kavita Bala, Computer Science, Cornell University

Summary
• Full-blown processor

