
1

CS 316: Logic and State

Kavita Bala
Fall 2007

Computer Science
Cornell University

Kavita Bala, Computer Science, Cornell University

Stateful Components
• Until now is combinatorial logic

– Output is computed when inputs are present
– System has no internal state
– Nothing computed in the present can depend

on what happened in the past!

• Need a way to record data
• Need a way to build stateful circuits
• Need a state-holding device

2

Kavita Bala, Computer Science, Cornell University

Bistable Devices

• In stable state, A = B

• How do we change the state?

A B

A B

1

A B

10 0

A Simple Device

Kavita Bala, Computer Science, Cornell University

SR Latch

• Set-Reset (S-R) Latch
• Q: Stored value and its

complement

• S=1 and R=1 ?

QQ00

??11
0101
1010

QQRS

S

R
Q

Q

3

Kavita Bala, Computer Science, Cornell University

D Latch

• Data Latch
– Easier to use than an SR latch
– No possibility of entering an undefined state

• When D changes, Q changes
… immediately

• Need to control when the output changes

D
S

R

Q

Q

Kavita Bala, Computer Science, Cornell University

Clocks
• Clocks help with modifying the contents of state-holding

elements
• A free running signal

– Generated by an oscillating crystal

• Clock signal has a fixed cycle time (aka cycle period)
• Clock frequency = 1/cycle time

clock
period

clock
high

clock
low

1

0

falling
edge

rising
edge

4

Kavita Bala, Computer Science, Cornell University

Edge-triggering
• Can design circuits to change on the rising or falling

edge

• Trigger on rising edge = positive edge-triggered

• Trigger on falling edge = negative edge-triggered

• Inputs must be stable just before the triggering edge

input

clock

Kavita Bala, Computer Science, Cornell University

First Attempt
• How does the

output behave?
S

R

D

clk

D

clk

Q

Q

Q

Q

D Q

Q

5

Kavita Bala, Computer Science, Cornell University

First Attempt
• How does the

output behave?
S

R

D

clk

Q

Q

clk

D

Q

Kavita Bala, Computer Science, Cornell University

First Attempt
• How does the output

behave?

• Changes in D that
occur when the clock
is low are deferred
until clock high

• Changes when clock
is high are registered
immediately

S

R

D

clk

D

clk

Q

Q

Q

Q

D Q

Q

6

Kavita Bala, Computer Science, Cornell University

Master-Slave Flip-Flop
• Outputs change

only on falling
edges

• Data is captured
on rising edges

• 1 cycle delay
– but works out

perfectly – data
for the next
stage is ready 1
cycle ahead of
time

D Q

Q

D Q

Q

clk

D

X

Q

X

Kavita Bala, Computer Science, Cornell University

Registers
• A register is simply

a set of master-
slave flip-flops in
parallel with a
shared clock

D Q D Q

D Q D Q

D Q D Q

D Q D Q
clk

D0

D3

D1

D2

4 4
4-bit
reg

7

Kavita Bala, Computer Science, Cornell University

Keyboard
• When a key is

pressed
– Compute a 7-bit

key identifier

• Store this
keycode
– The computer

may not be
ready to read it
right away

+

3-bit
encoder
(4 to 3)

4-bit
encoder
(16 to 4)

not all 16 wires are shown

Kavita Bala, Computer Science, Cornell University

Keyboard with Last Key Display
+

3-bit
encoder
(4 to 3)

4-bit
encoder
(16 to 4)

not all 16 wires are shown

4-bit
reg

7
seg

deco

7
seg

deco

4-bit
reg

8

Kavita Bala, Computer Science, Cornell University

Summary
• We can now build interesting devices with

sensors
– Using combinatorial logic

• We can also store data values
– In state-holding elements
– Coupled with clocks

Finite State Machines

9

Kavita Bala, Computer Science, Cornell University

Finite State Machines
• An electronic machine which has

– external inputs
– externally visible outputs
– internal state

• Output and next state depend on
– inputs
– current state

Kavita Bala, Computer Science, Cornell University

Designing a FSM
• Draw a state diagram
• Write down state transition table
• Assign numbers to states
• Determine logic equations for all flip-flops

and outputs

10

Kavita Bala, Computer Science, Cornell University

A Simple Example
• Goal: flash hello on LEDs
• Inputs: clock
• Outputs: Just one

7-segment LED

• Flash “h” then “e” then “l”
then “l” then “o”
– h = <0011101>
– e = <0111110>
– l = <0010110>
– o = <1110111>

o0

o1

o2

o3

o4

o5

o6

Kavita Bala, Computer Science, Cornell University

HELLObox: State Diagram

• Determine the transitions
– label all edges (transitions) with the inputs that cause

them, unlabeled edges are unconditional transitions
– show start state

S0 S1 S2 S3 S4

<0011101>
H

<0111110>
E

<0010110>
L

< 0010110 >
L

<1110111>
O

11

Kavita Bala, Computer Science, Cornell University

HELLObox: State Table

0111110S2S1

0010110S4S3

1110111S0S4

0010110S3S2

0011101S1S0

OutputNext
State

Current
State

• Build state table
– rote encoding of

the state diagram

Kavita Bala, Computer Science, Cornell University

HELLObox: State Assignment 1

0111110010001

0010110100011

1110111000100

0010110011010

0011101001000

OutputNext
State

Current
State

• Assign bit patterns to
states
– Try to make resulting

device simple
– One option is shown

• Determine logic
equations for
– every bit of output
– next state
– for every flip-flop and

output

12

Kavita Bala, Computer Science, Cornell University

HELLObox #1
• 12 bits of information

(7 outputs + 3 bits of
next state) are
computed by the
combinatorial circuit

• All 10 bits have non-
trivial logic equations

flip-flops

co
m

bi
na

tio
na

l
ci

rc
ui

t

o0
o1o2o3o4o5

o6

Kavita Bala, Computer Science, Cornell University

HELLObox: State Assignment 2

01111100010110001111100

00101101110111000101101

11101110011101011101110

00101100010110100101100

00111010111110000111010

OutputNext
State

Current
State

• Assign bit
patterns to
states to make
the resulting
device simple

• Here, we use
far more bits
than necessary
– to simplify the

combinatorial
circuit

13

Kavita Bala, Computer Science, Cornell University

HELLObox #2
• 15 bits of information

(7 outputs + 8 bits of
next state) are
computed by the
combinatorial circuit

• 8 bits have non-trivial
logic equations
– all 7 outputs are simple

pass-throughs

flip-flops

co
m

bi
na

tio
na

l
ci

rc
ui

t

o0
o1o2o3o4o5

o6

Kavita Bala, Computer Science, Cornell University

FSM: Serial Adder
• Add two input bit streams

– streams are sent with least-significant-bit (lsb)
first

…10110

…01111
…00101

14

Kavita Bala, Computer Science, Cornell University

FSM: State Diagram

• Two states: S0 (no carry), S1 (carry in
hand)

• Inputs: a and b
• Output: z

– Arcs labelled with input bits a and b, and
output z

S0 S100/0

10/1 01/1 10/0 01/0

11/1

00/1

11/0

Kavita Bala, Computer Science, Cornell University

Serial Adder: State Table
• Write down all input

and state
combinations

S11S111
S10S101
S10S110
S01S100
S10S011
S01S001
S01S010
S00S000

next
state

zstateba

15

Kavita Bala, Computer Science, Cornell University

Serial Adder: State Assignment
• Two states, so 1-bit

is sufficient
– A single flip-flop will

encode the state

11111
10101
10110
01100
10011
01001
01010
00000
s’zsba

Kavita Bala, Computer Science, Cornell University

Serial Adder: Circuit

• Equations
– z = abs + abs + abs + abs
– s’ = abs + abs + abs + abs

clk

Q D

z
a

b
combinational

logic

s s’

