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Announcements

e Core Wars will be out in the next couple of days
— Aim at having fun!

— Number of points allocated to it is small (10-20% of
other assignments)

— 5 points for turning something in, 1 point more for
going up the ladder

» Pizza party on last day of class
— Showdown
— Friday Nov 30t

» Final project (distributed ray tracer) out last week
— Demoed: Dec 13 2-4:30
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Memory Hierarchy

16 KB registers/L1 2 ns, random access

512 KB L2 5 ns, random access
2GB DRAM 20-80 ns, random access
300 GB Disk 2-8 ms, random access
1TB Tape 100s, sequential access
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Tapes

® Same basic principle for 8-tracks =
cassettes, VHS, atari tape drive,

tape storage
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Disks & CDs

@ Disks use same magnetic
medium as tapes

— concentric rings
(not a spiral)

& CDs & DVDs use optics,
and a single spiral track

* Non-volatile
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Disk Physics
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Disk Accesses

& Accessing a disk requires:
— specify sector: C (cylinder), H (head), and S (sector)
— specify size: number of sectors to read or write
— specify memory address: bus address to DMA to

& Performance:

= seek time: move the arm
assembly to track Track

= Rotational delay: wait for

sector to come around Rotation

= transfer time: get the bits Seek elay
off the disk
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Example

» Average time to read/write 512-byte sector
— Disk rotation at 10,000 RPM
— Seek time: 6ms
— Transfer rate: 50 MB/sec
— Controller overhead: 0.2 ms

» Average time:
— Seek time + rotational delay + transfer time +
controller overhead

— 6ms + 0.5 rotation/(10,000 RPM) + 0.5KB/(50
MB/sec) + 0.2ms

-6.0+3.0+0.01+0.2=9.2ms
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Disk Scheduling

® Goal: minimize seek time
= secondary goal: minimize rotational latency

® FCFS (First come first served)
® Shortest seek time

® SCAN/Elevator
@First service all requests in one direction
@®Then reverse and serve in opposite direction

® Circular SCAN

® Go off the edge and come to the beginning and
start all over again
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What we didn’t talk about

 RAID
— Redundancy for fault tolerance
— Speed

» Solid State drives
— Very expensive still
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GPUs
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NVidia G80 Architecture
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Traditional Graphics Pipeline
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Projection & Clipping

View frustum Eye view
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Rasterization & Z-buffer

Screen X ———

Screeny
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Brief History

The dark ages (early-mid 1990°s), when there were only frame
buffers for normal PC’s.

Some accelerators were no more than a simple chip that sped up
linear interpolation along a single span, so increasing fill rate.

This is where pipelines start for PC commodity graphics, prior to
Fall of 1999.

This part of the pipeline reaches the consumer level with the
introduction of the NVIDIA GeForce256.

Hardware today is moving traditional application processing (surface
generation, occlusion culling) into the graphics accelerator.
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Moore’s Law

« 1965

— number of transistors that can be integrated
on a die would double every 18 to 24
months (i.e., grow exponentially with time).

« Amazingly visionary

2300 transistors, 1 MHz clock (Intel 4004) - 1971

16 Million transistors (Ultra Sparc Il1)

42 Million transistors, 2 GHz clock (Intel Xeon) — 2001

55 Million transistors, 3 GHz, 130nm technology, 250mm? die
(Intel Pentium 4) — 2004

— 290+ Million transistors, 3 GHz (Intel Core 2 Duo) — 2007
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Processor Performance Increase
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b
Faster than Moore’s Law
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Why are GPUs so fast?

* Pipelined and parallel

* Very, very deep pipeline: 800-1000 deep
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GPU Parallelism
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G70 Hardware Architecture
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Vertex Processor
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Parallelism

 Critical to achieving performance

* Flynn’s taxonomy
— SISD (Single instruction, single data)
= Boring CPU
— MISD (Multiple instruction, single data)
» Redundant processing

— SIMD (Single instruction, multiple data)
= GPUs

— MIMD (Multiple instruction, multiple data)
= Multicore, Cell processor
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Parallelism

« Must exploit parallelism for performance
— Lot of parallelism in graphics applications
« SIMD: single instruction, multiple data

— Perform same operation in parallel on many
data items

— Data parallelism
e MIMD: multiple instruction, multiple data

— Run separate programs in parallel (on
different data)

— Task parallelism
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Performance Tuning

1. Identify bottleneck (slowest stage)
2. Improve performance of slowest stage
Repeat as necessary
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Amdahl’'s Law
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Amdahl’'s Law

Task: serial part, parallel part

As number of processors increases,
— time to execute parallel part goes to zero
— time to execute serial part remains the same

Serial part eventually dominates
Must parallelize ALL parts of task

Execution Time without F
SO Execution Time with E
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Amdahl’'s Law

» Consider an improvement E
» F of the execution time is affected
e Sis the speedup

Execution time (with E) = ((1 — F') + F/S) - Execution time (without E)

1
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Load Balancing

* Need to manage work
so all units are actually
operating
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GPGPUs

Scientific Computing
— MATLAB codes
Convex hulls

Molecular Dynamics

Etc.
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