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Announcements

« HW 1 grades are out

« HW 2 is due on Friday

* PA 4 is out on Friday
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Cache Organization

 Three common designs

— Fully associative: Block can be anywhere in
the cache

— Direct mapped: Block can only be in one line
in the cache

— Set-associative: Block can be in a few (2 to 8)
places in the cache
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Misses

* Three types of misses
— Cold
» The line is being referenced for the first time
— Capacity

= The line was evicted because the cache was not
large enough

— Conflict

= The line was evicted because of another access
whose index conflicted
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Fully Associative Cache

V Tag Block
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Comparison: Direct Mapped Cache

V Tag Block
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Cache Writes

cead Cache
CPU — mmdll Memory
esd SRAM g

DRAM

data

* No-Write

— writes invalidate the cache and go to memory
* Write-Through

— writes go to cache and to main memory

* Write-Back
— write cache, write main memory only when block is evicted

Kavita Bala, Computer Science, Cornell University

What about Stores?

* Where should you write the result of a store?

— If that memory location is in the cache?
= Send it to the cache
= Should we also send it to memory right away?
(write-through policy)
= Wait until we kick the block out (write-back policy)

— Ifit is not in the cache?

= Allocate the line (put it in the cache)?
(write allocate policy)

= Write it directly to memory without allocation?
(no write allocate policy)
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Handling Stores (Write-Through)
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Write-Through (REF 1)
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Write-Through (REF 1)
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Write-Through (REF 2)
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Write-Through (REF 2)

Processor
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Write-Through (REF 3)

Processor
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Write-Through (REF 3)

Processor
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Write-Through (REF 4)

Processor
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Write-Through (REF 4)

Processor
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Write-Through (REF 5)

Processor
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Write-Through (REF 5)

Processor
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Write-Through (REF 6,7,8)
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Ld R1« M[ 1
Ld R2« M[ 7
St R2>M[ 0
St RL>M[ 5
Ld R2 « M[ 1
St RO—» M[

R1 VA
R2
R3

Cache

V tag data

Misses: 4
Hits: 1+3

Memory

29
120
123

0
1
2
3
4

Kavita Bala, Computer science, Cornell Universi

10



How Many Memory References?

Each miss reads a block (only two words in this
cache)

Each store writes a word (or a block, depends)
Total reads: eight words

Total writes:
— Before last 3 stores: two words
— After last 3 stores: five
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Write-Through vs. Write-Back

Can we also design the cache NOT to write
all stores immediately to memory?

— Keep the most current copy in cache, and
update memory when that data is evicted
(write-back policy)

— Do we need to write-back all evicted lines?

— No, only blocks that have been stored into
(written)

— Keep a “dirty bit”, reset when the line is
allocated, set when the block is written

— If a block is “dirty” when evicted, write its data
back into memory
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Dirty Bits and Write-Back Buffers

Tag| DataByte O, Bytel ... ByteN

Line
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 Dirty bits indicate which lines have been written

+ Dirty bits enable the cache to handle multiple writes to
the same cache line without having to go to memory

* Write-back buffer
— A queue where dirty lines are placed
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Handling Stores (Write-Back)
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Write-Back (REF 1)
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Write-Back (REF 1)
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Write-Back (REF 2)
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Write-Back (REF 2)
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Write-Back (REF 3)
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Write-Back (REF 3)

Processor
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Write-Back (REF 4)

Processor
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Write-Back (REF 4)
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Write-Back (REF 5)
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Write-Back (REF 5)
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Write-Back (REF 5)
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Write-Back (REF 6, 7, 8)

Processor
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How many memory references?

Each miss reads a block
Two words in this cache

Each evicted dirty cache line writes a block
Total reads: eight words
Total writes: four after final eviction

Choose write-back or write-through?
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Cache Design

* Need to determine parameters
— Block size
— Number of ways
— Eviction policy
— Write policy
— Separate I-cache from D-cache
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Basic Cache Organization

Decide on the block size
— How? Simulate lots of different block sizes

and see which one gives the best

performance
— Most systems use a block size between 32

bytes and 128 bytes

1a Block
g Offset
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rate
[
\ /16K
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Tradeoff

o Larger sizes reduce the overhead by
» Reducing the number of tags
» Reducing the size of each tag

e But
— Have fewer blocks available

— And the time to fetch the block on a miss is
longer

Kavita Bala, Computer Science, Cornell University

Short Performance Discussion

e Complicated
— Time from start-to-end (wall-clock time)
— System time, user time
— CPI (Cycles per instruction)

e |deal CPI?
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Cache Performance

Consider hit (H) and miss ratio (M)
H X ATcache + M X ATmemory

Hit rate = 1 — Miss rate

Access Time is given in cycles

Ratio of Access times, 1:50

90% :.90 +.1x50 =59

95% :.95 +.05x50 =.95+2.5=3.45

99% :.99 +.01x50 1.49

99.9%: .999 + .001 x 50 = 0.999 + 0.05 =1.049
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Cache Hit/Miss Rate

Consider processor that is 2x times faster
— But memory is same speed

Since AT is access time in terms of cycle

time: it doubles 2x
H X ATcache + M X ATmemory
Ratio of Access times, 1:100

99% :.99 +.01x100 =1.99
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Cache Hit/Miss Rate

» Original is 1GHz, 1ns is cycle time
» CPI (cycles per instruction): 1.49
» Therefore, 1.49 ns for each instruction

* New is 2GHz, 0.5 ns is cycle time.
e CPI: 1.99, 0.5ns. 0.995 ns for each instruction.

e So it doesn’t go to 0.745 ns for each instruction.

e Speedup is 1.5x (not 2x)
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Misses

* Three types of misses
— Cold
» The line is being referenced for the first time
— Capacity

= The line was evicted because the cache was not
large enough

— Conflict

= The line was evicted because of another access
whose index conflicted
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Cache Conscious Programming

int alNCOL][NROW];
int sum = 0;

for(j = 0; ) < NCOL; ++))
for(i = 0; i < NROW, ++i)
sum += afj][if;

e Speed up this program!

Kavita Bala, Computer Science, Cornell University

Cache Conscious Programming

int al]NCOL][NROW];
int sum = 0;

il
12
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15

for(j = 0; ] < NCOL; ++j)
for(i = 0; i < NROW; ++i)
sum += a[j][i];
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=
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* Every access is a cache miss!
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Cache Conscious Programming

5 |6

7

P[]

13 |14 | 15

int af]NCOL][NROW];

int sum = 0;

for(i = 0; i < NROW; ++i)

for(j = 0; j < NCOL,; ++j)

sum += a[j][if;

e Same program, trivial transformation, 3 out

of four accesses hit in the cache
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