CS 316:
Caches-lll

Kavita Bala
Fall 2007
Computer Science
Cornell University

Announcements

« HW 1 grades are out

« HW 2 is due on Friday

* PA 4 is out on Friday

Kavita Bala, Computer Science, Cornell University

Cache Organization

 Three common designs

— Fully associative: Block can be anywhere in
the cache

— Direct mapped: Block can only be in one line
in the cache

— Set-associative: Block can be in a few (2 to 8)
places in the cache

Kavita Bala, Computer Science, Cornell University

Misses

* Three types of misses
— Cold
» The line is being referenced for the first time
— Capacity

= The line was evicted because the cache was not
large enough

— Conflict

= The line was evicted because of another access
whose index conflicted

Kavita Bala, Computer Science, Cornell University

Fully Associative Cache

V Tag Block

Kavita Bala, ComputertSet

Comparison: Direct Mapped Cache

V Tag Block

A HEHHHTTHTHN

Kavita Bala, Computer Science, Cornell University

Cache Writes

cead Cache
CPU — mmdll Memory
esd SRAM g

DRAM

data

* No-Write

— writes invalidate the cache and go to memory
* Write-Through

— writes go to cache and to main memory

* Write-Back
— write cache, write main memory only when block is evicted

Kavita Bala, Computer Science, Cornell University

What about Stores?

* Where should you write the result of a store?

— If that memory location is in the cache?
= Send it to the cache
= Should we also send it to memory right away?
(write-through policy)
= Wait until we kick the block out (write-back policy)

— Ifit is not in the cache?

= Allocate the line (put it in the cache)?
(write allocate policy)

= Write it directly to memory without allocation?
(no write allocate policy)

Kavita Bala, Computer Science, Cornell University

Handling Stores (Write-Through)

Processor

Assume write-allocate
policy

Ld R1« M[1
Ld R2« M[7
St R2>M[0
St RL>M[5
Ld R2 « M[10

]
]
]
]
]

Ro N
rR1 N
Rz N
R3 N

Kavita Bal

Cache

V tag data

Misses: 0
Hits: 0

Memory

AY
120
123

71
150

162

0
1
2
3
4
5
6
7
8

O OTeT T

TTCE, " COTTTETT OTTVeTST

Write-Through (REF 1)

Processor

B Ld R1< M|

1
Ld R2« M[7
St R2>M[0
St RL>M[5
Ld R2 « M[10

]
]
]
]
]

Ro N
rR1 N
Rz N
R3

Cache

V tag data

Misses: 0
Hits: 0

Memory

yAY

120
123
71
150
162

00 ~NOO UL WNEFE O

Kavita Bala, Computer Science, Cornell Universi

Write-Through (REF 1)

Processor

B Ld R1« M]

1
Ld R2«M[7
St R2>M[0
St RL>M[5
Ld R2 <« M[10

RO
-
R2

—

R3

]
]
]
]
]

Cache

V tag data

AN 78

29
lrul0]
I

Misses: 1
Hits: 0

Memory

AY
120
123

71
150
162
173

18

21

O N O D WNEFE O

el el
U1D W N O ©

Kavita Bala, Computer Science, Cornell Universii

Write-Through (REF 2)

Processor

Ld R1« M[

B Ld R2« M|

1
7
St R2>M[0
St RL>M[5
Ld R2 « M[10

RO
-
R2

—

R3

]
]
]
]
]

Kavita Bala, Computer science, Cornell Universi

Cache

V tag data

AN 78
29
Irul0]
]

Misses: 1
Hits: 0

Memory

29

120
123
71
150
162

00 ~NOO UL WNEFE O

Write-Through (REF 2)

Processor

Ld Rl«<M[1
ﬂLd R2&« M[7
St R2>M[0
St RL>M[5
Ld R2« M[10

]
]
]
1
1

RO
R1 [EVAY

R2
R3

Cache

V tag data

Irul1] 0 IZ)
YAS)

[A[3] 162

Misses: 2
Hits: 0

Memory

AY
120
123

71
150

162

O N O D WNEFE O

Kavita Bala, Computer Science, Cornell Universii

Write-Through (REF 3)

Processor

Ld R1« M[1
Ld R2« M[7
St R2>M[0
St RL>M[5
Ld R2 « M[10

]
]
]
]
]

RO
=3 29
R2

R3

Kavita Bala, Computer science, Cornell Universi

Cache

V tag data

Irul1] o &
29
[A[3] 162
173

Misses: 2
Hits: 0

Memory

29
120
123

/1
150

162

O ~NO 01D WNE O

Write-Through (REF 3)

Processor

Ld R1« M[1
Ld R2« M[7
St R2>M[0
St RL>M[5
Ld R2 « M[10

]
]
]
1
1

RO
R1 [EVAY

R2
R3

Cache

V tag data

Iru 162
173

Misses: 2
Hits: 1

Memory

0

120
123
71
150
162
173

21
33
28

O N O U1 B WN

Kavita Bala, Computer Science, Cornell Universii

Write-Through (REF 4)

Processor

Ld R1« M[1
Ld R2« M[7
St R2>M[0
St RL>M[5
Ld R2 « M[10

]
]
]
]
]

RO
=3 29
R2

R3

Kavita Bala, Computer science, Cornell Universi

Cache

V tag data

Iru 162
173

Misses: 2
Hits: 1

Memory

29

120
123
71
150
162
173
18
21
33
28

O ~NO 01D WNE O

[ERN
[{c]

[EEN
[N

el
U1 W N

Write-Through (REF 4)

Processor

Ld R1« M[1
Ld R2« M[7
St R2>M[0
St RL>M[5
Ld R2 « M[10

]
]
]
1
1

RO
R1 [EVAY

R2
R3

Cache

V tag data
1 o

Misses: 3
Hits: 1

Memory

Kavita Bala, Computer Science, Cornell Universii

Write-Through (REF 5)

Processor

Ld R1« M[1
Ld R2« M[7
St R2>M[0
St RL>M[5

1
1
]
B Ld R2« M[10]

RO

=3 29
R2
R3

Kavita Bala, Computer science, Cornell Universi

Cache

V tag data
Iru

71
29

Misses: 3
Hits: 1

Memory

29

120
123
71
29
162
173
18
21
33
28

O ~NO 01D WNE O

[ERN
[{c]

[EEN
[N

el
U1 W N

Write-Through (REF 5)

Processor

Ld RLeM[1
Ld R2 & M[7
St R2—>M[0
St RLo>M[5
B Ld R2 M[10

]
]
]
1
]

RO
R1 [VAY

R2
R3

Iru

Cache

V tag data

Misses: 4
Hits: 1

Memory
5
29

2[120

3 123

4 71

S 29

6 162

7

8

9

10

11

12
13
14
15

Kavita Bala, Computer Science, Cornell Universii

Write-Through (REF 6,7,8)

Processor

Ld R1« M[1
Ld R2« M[7
St R2>M[0
St RL>M[5
Ld R2 « M[1
St RO—» M[

R1 VA
R2
R3

Cache

V tag data

Misses: 4
Hits: 1+3

Memory

29
120
123

0
1
2
3
4

Kavita Bala, Computer science, Cornell Universi

10

How Many Memory References?

Each miss reads a block (only two words in this
cache)

Each store writes a word (or a block, depends)
Total reads: eight words

Total writes:
— Before last 3 stores: two words
— After last 3 stores: five

Kavita Bala, Computer Science, Cornell University

Write-Through vs. Write-Back

Can we also design the cache NOT to write
all stores immediately to memory?

— Keep the most current copy in cache, and
update memory when that data is evicted
(write-back policy)

— Do we need to write-back all evicted lines?

— No, only blocks that have been stored into
(written)

— Keep a “dirty bit”, reset when the line is
allocated, set when the block is written

— If a block is “dirty” when evicted, write its data
back into memory

Kavita Bala, Computer Science, Cornell University

11

Dirty Bits and Write-Back Buffers

Tag| DataByte O, Bytel ... ByteN

Line

-] <
olrlo| T

 Dirty bits indicate which lines have been written

+ Dirty bits enable the cache to handle multiple writes to
the same cache line without having to go to memory

* Write-back buffer
— A queue where dirty lines are placed

Kavita Bala, Computer Science, Cornell University

Handling Stores (Write-Back)

Processor Cache Memory
2,
1 29
2[120
3 123
LdRie«M[1]| Vd tag data 4 71
St R2>M[0]
st Rl:))M[5] 6| 162
Ld R2< M[10] 7 173
e
gl 21
10 33
RO 11f 28
. 12
2; Misses: 0 13
R3 Hits: 0 14
15

Kavita Bala, Computer science, Cornell Universi

12

Write-Back (REF 1)

Processor

B Ld R1« M]

1
Ld R2« M[7
St R2>M[0
St RL>M[5
Ld R2 « M[10

]
]
]
1
1

Cache

Vd ta

Misses:
Hits:

data

0
0

Memory

N~
H

[y
N
o

[y
N
w

=
a1
o

0N b wWwNE O
\‘
[ERN

[N
[}

el e el el e
U1 D W N

Kavita Bala, Computer Science, Cornell Universii

Write-Back (REF 1)

Processor

B Ld R1< M|

1
Ld R2« M[7
St R2>M[0
St RL>M[5
Ld R2 « M[10

]
]
]
]
]

RO
R1
R2
R3

Kavita Bala, Computer science, Cornell Universi

Cache

Misses:
Hits:

1
0

O ~NO 01D WNE O

[ERN
[{c]

[EEN
[N

el
U1 W N

13

Write-Back (REF 2)

Processor

Ld Rl«<M[1
ﬂLd R2&M[7
St R2>M[0
St RL>M[5
Ld R2« M[10

]
]
]
1
1

Cache

Misses:
Hits:

1
0

O N O D WNEFE O

[N
[}

[EE
[EEN

e
U1 D W N

Kavita Bala, Computer Science, Cornell Universii

Write-Back (REF 2)

Processor

Ld RLe M[1
B (4 R2« M[7
St R2—>M[0
St RL>M[5
Ld R2 « M[10

]
]
]
]
]

RO
=3 29
R2

R3

Kavita Bala, Computer science, Cornell Universi

Cache

Misses:
Hits:

2
0

O ~NO 01D WNE O

[ERN
[{c]

[EEN
[N

el
U1 W N

14

Write-Back (REF 3)

Processor

Ld RL«M[1]
Ld R2&«M[7]
St R2—>M[0]
St RL>M[5]
Ld R2 « M[10]

RO
R1 [EVAY

R2
R3

Cache

Misses: 2
Hits: 0

O N O D WNEFE O

[N
[}

[EE
[EEN

e
U1 D W N

Kavita Bala, Computer Science, Cornell Universii

Write-Back (REF 3)

Processor

Ld RL«M[1]
Ld R2«M[7]
St R2—>M[0]
St RL>M[5]
Ld R2 « M[10]

RO

=3 29
R2
R3

Kavita Bala, Computer science, Cornell Universi

Cache

Misses: 2
Hits: 1

O ~NO 01D WNE O

[ERN
[{c]

[EEN
[N

el
U1 W N

15

Write-Back (REF 4)

Processor

Ld R1« M[1
Ld R2« M[7
St R2>M[0
St RL>M[5
Ld R2 « M[10

]
]
]
1
1

RO
R1 [EVAY

R2
R3

Cache

Misses:
Hits:

2
1

O N O D WNEFE O

[N
[}

[EE
[EEN

e
U1 D W N

Kavita Bala, Computer Science, Cornell Universii

Write-Back (REF 4)

Processor

Ld R1« M[1
Ld R2« M[7
St R2>M[0
St RL>M[5
Ld R2 « M[10

]
]
]
]
]

RO
=3 29
R2

R3

Kavita Bala, Computer science, Cornell Universi

Cache

Misses:
Hits:

3
1

16

Write-Back (REF 5)

Processor Cache Memory

N~
H

71

0N b wWwNE O
\‘
[ERN

120
123
LdrRi«M[11| Vd tag data
Ld R2e«M[7] |2 150
St R2>M[0]
St RIS M 5] 162
1

[
~
wW

B Ld R2 M[10

29
e 21
10 33
RO ﬂ 28
29 . .
g; Misses: 3 13
R3 Hits: 1 14

[N
U1

Kavita Bala, Computer Science, Cornell Universii

Write-Back (REF 5)

Processor Cache Memory

0

120

3123

LdRi<M[1] [V d tag data 4 71

oo S| 150
—>M[0] 6

St RL>M[5] 162

B Ld R2« M[10] 71 71 173

29 18

g 21

10} 33

RO 1] 28
=3 29 .] 12
R2 Misses: 4 13
R3 Hits: 1 14
15

Kavita Bala, Computer science, Cornell Universi

Write-Back (REF 5)

Processor

Ld RLeM[1
Ld R2 & M[7
St R2—>M[0
St RLo>M[5
B Ld R2 M[10

]
]
]
1
]

RO
R1 [VAY

rR2_33 |

R3

Cache

V d tag data

Misses:
Hits:

4
1

Kavita Bala, Computer Science, Cornell Universii

Write-Back (REF 6, 7, 8)

Processor

Ld RL«M[1]
Ld R2«M[7]
St R2>M[0]
St RL>M[5]
Ld R2 « M[10]
St RO>M[5]
51

1

Kavita Bala, Computer science, Cornell Universi

Cache

Misses:
Hits:

4
2+1+]

Memory

29

120
123
71
150
162
173

O ~NO 01D WNE O

18

How many memory references?

Each miss reads a block
Two words in this cache

Each evicted dirty cache line writes a block
Total reads: eight words
Total writes: four after final eviction

Choose write-back or write-through?

Kavita Bala, Computer Science, Cornell University

Cache Design

* Need to determine parameters
— Block size
— Number of ways
— Eviction policy
— Write policy
— Separate I-cache from D-cache

Kavita Bala, Computer Science, Cornell University

19

Basic Cache Organization

Decide on the block size
— How? Simulate lots of different block sizes

and see which one gives the best

performance
— Most systems use a block size between 32

bytes and 128 bytes

1a Block
g Offset

Kavita Bala, Computer Science, Cornell University

rate
[
\ /16K
o B4K

Kavita Bala, Computer Science, Cornell University

lh—-—-_._____________-_‘_
0% 4 4 % 256K
16 32 64 128 256
Block size

Tradeoff

o Larger sizes reduce the overhead by
» Reducing the number of tags
» Reducing the size of each tag

e But
— Have fewer blocks available

— And the time to fetch the block on a miss is
longer

Kavita Bala, Computer Science, Cornell University

Short Performance Discussion

e Complicated
— Time from start-to-end (wall-clock time)
— System time, user time
— CPI (Cycles per instruction)

e |deal CPI?

Kavita Bala, Computer Science, Cornell University

21

Cache Performance

Consider hit (H) and miss ratio (M)
H X ATcache + M X ATmemory

Hit rate = 1 — Miss rate

Access Time is given in cycles

Ratio of Access times, 1:50

90% :.90 +.1x50 =59

95% :.95 +.05x50 =.95+2.5=3.45

99% :.99 +.01x50 1.49

99.9%: .999 + .001 x 50 = 0.999 + 0.05 =1.049

Kavita Bala, Computer Science, Cornell University

Cache Hit/Miss Rate

Consider processor that is 2x times faster
— But memory is same speed

Since AT is access time in terms of cycle

time: it doubles 2x
H X ATcache + M X ATmemory
Ratio of Access times, 1:100

99% :.99 +.01x100 =1.99

Kavita Bala, Computer Science, Cornell University

22

Cache Hit/Miss Rate

» Original is 1GHz, 1ns is cycle time
» CPI (cycles per instruction): 1.49
» Therefore, 1.49 ns for each instruction

* New is 2GHz, 0.5 ns is cycle time.
e CPI: 1.99, 0.5ns. 0.995 ns for each instruction.

e So it doesn’t go to 0.745 ns for each instruction.

e Speedup is 1.5x (not 2x)

Kavita Bala, Computer Science, Cornell University

Misses

* Three types of misses
— Cold
» The line is being referenced for the first time
— Capacity

= The line was evicted because the cache was not
large enough

— Conflict

= The line was evicted because of another access
whose index conflicted

Kavita Bala, Computer Science, Cornell University

23

Cache Conscious Programming

int alNCOL][NROW];
int sum = 0;

for(j = 0;) < NCOL; ++))
for(i = 0; i < NROW, ++i)
sum += afj][if;

e Speed up this program!

Kavita Bala, Computer Science, Cornell University

Cache Conscious Programming

int al]NCOL][NROW];
int sum = 0;

il
12
13

14

15

for(j = 0;] < NCOL; ++j)
for(i = 0; i < NROW; ++i)
sum += a[j][i];

© ol ~ (2] o e w N L

=
o

* Every access is a cache miss!

Kavita Bala, Computer Science, Cornell University

24

Cache Conscious Programming

5 |6

7

P[]

13 |14 | 15

int af]NCOL][NROW];

int sum = 0;

for(i = 0; i < NROW; ++i)

for(j = 0; j < NCOL,; ++j)

sum += a[j][if;

e Same program, trivial transformation, 3 out

of four accesses hit in the cache

Kavita Bala, Computer Science, Cornell University

25

