CS 316: Caches-III

Kavita Bala Fall 2007

Computer Science Cornell University

Announcements

- HW 1 grades are out
- HW 2 is due on Friday
- PA 4 is out on Friday

Cache Organization

- Three common designs
 - Fully associative: Block can be anywhere in the cache
 - Direct mapped: Block can only be in one line in the cache
 - Set-associative: Block can be in a few (2 to 8) places in the cache

Kavita Bala, Computer Science, Cornell University

Misses

- Three types of misses
 - Cold
 - The line is being referenced for the first time
 - Capacity
 - The line was evicted because the cache was not large enough
 - Conflict
 - The line was evicted because of another access whose index conflicted

Cache Writes

- No-Write
 - writes invalidate the cache and go to memory
- Write-Through
 - writes go to cache and to main memory
- Write-Back
 - write cache, write main memory only when block is evicted

Kavita Bala, Computer Science, Cornell University

What about Stores?

- Where should you write the result of a store?
 - If that memory location is in the cache?
 - Send it to the cache
 - Should we also send it to memory right away? (write-through policy)
 - Wait until we kick the block out (write-back policy)
 - If it is not in the cache?
 - Allocate the line (put it in the cache)? (write allocate policy)
 - Write it directly to memory without allocation? (no write allocate policy)

How Many Memory References?

- · Each miss reads a block (only two words in this cache)
- Each store writes a word (or a block, depends)
- Total reads: eight words
- Total writes:
 - Before last 3 stores: two words
 - After last 3 stores: five

Kavita Bala, Computer Science, Cornell University

Write-Through vs. Write-Back

Can we also design the cache NOT to write all stores immediately to memory?

- Keep the most current copy in cache, and update memory when that data is evicted (write-back policy)
- Do we need to write-back all evicted lines?
- No, only blocks that have been stored into (written)
- Keep a "dirty bit", reset when the line is allocated, set when the block is written
- If a block is "dirty" when evicted, write its data back into memory

 Kavita Bala, Computer Science, Cornell University

Dirty Bits and Write-Back Buffers

V	D	Tag	Data Byte 0, Byte 1	Byte N	
1	0				Line
1	1				
1	0				

- Dirty bits indicate which lines have been written
- Dirty bits enable the cache to handle multiple writes to the same cache line without having to go to memory
- · Write-back buffer
 - A queue where dirty lines are placed

Kavita Bala, Computer Science, Cornell University

Handling Stores (Write-Back)

How many memory references?

- Each miss reads a block
 Two words in this cache
- Each evicted dirty cache line writes a block
- Total reads: eight words
- Total writes: four after final eviction

Choose write-back or write-through?

Kavita Bala, Computer Science, Cornell University

Cache Design

- Need to determine parameters
 - Block size
 - Number of ways
 - Eviction policy
 - Write policy
 - Separate I-cache from D-cache

Basic Cache Organization

Decide on the block size

- How? Simulate lots of different block sizes and see which one gives the best performance
- Most systems use a block size between 32 bytes and 128 bytes

Tradeoff

- Larger sizes reduce the overhead by
 - Reducing the number of tags
 - Reducing the size of each tag
- But
 - Have fewer blocks available
 - And the time to fetch the block on a miss is longer

Kavita Bala, Computer Science, Cornell University

Short Performance Discussion

- Complicated
 - Time from start-to-end (wall-clock time)
 - System time, user time
 - CPI (Cycles per instruction)
- Ideal CPI?

Cache Performance

- Consider hit (H) and miss ratio (M)
- H x AT_{cache} + M x AT_{memory}
- Hit rate = 1 Miss rate
- · Access Time is given in cycles
- Ratio of Access times, 1:50
- 90% : $.90 + .1 \times 50 = 5.9$
- 95% : $.95 + .05 \times 50 = .95 + 2.5 = 3.45$
- 99% : $.99 + .01 \times 50 = 1.49$
- 99.9%: $.999 + .001 \times 50 = 0.999 + 0.05 = 1.049$

Kavita Bala, Computer Science, Cornell University

Cache Hit/Miss Rate

- Consider processor that is 2x times faster
 - But memory is same speed
- Since AT is access time in terms of cycle time: it doubles 2x
- H x AT_{cache} + M x AT_{memory}
- Ratio of Access times, 1:100
- \bullet 99% : .99 + .01 x 100 = 1.99

Cache Hit/Miss Rate

- Original is 1GHz, 1ns is cycle time
- CPI (cycles per instruction): 1.49
- Therefore, 1.49 ns for each instruction
- New is 2GHz, 0.5 ns is cycle time.
- CPI: 1.99, 0.5ns. 0.995 ns for each instruction.
- So it doesn't go to 0.745 ns for each instruction.
- Speedup is 1.5x (not 2x)

Kavita Bala, Computer Science, Cornell University

Misses

- Three types of misses
 - Cold
 - The line is being referenced for the first time
 - Capacity
 - The line was evicted because the cache was not large enough
 - Conflict
 - The line was evicted because of another access whose index conflicted

Cache Conscious Programming

int a[NCOL][NROW];
int sum = 0;

for(j = 0; j < NCOL; ++j)
 for(i = 0; i < NROW; ++i)
 sum += a[j][i];</pre>

Speed up this program!

Kavita Bala, Computer Science, Cornell University

Cache Conscious Programming

int a[NCOL][NROW]; int sum = 0;

1	11				
2	12				
3	13				
4	14				
5	15				
6					
7					
8					
9					
10					

• Every access is a cache miss!

Cache Conscious Programming

int sum = 0;

$$for(i = 0; i < NROW; ++i)$$

$$for(j = 0; j < NCOL; ++j)$$

$$sum += a[j][i];$$

int a[NCOL][NROW];

• Same program, trivial transformation, 3 out of four accesses hit in the cache