
1

CS 316: 
Caches-III

Kavita Bala
Fall 2007

Computer Science
Cornell University

Kavita Bala, Computer Science, Cornell University

Announcements

• HW 1 grades are out

• HW 2 is due on Friday

• PA 4 is out on Friday 



2

Kavita Bala, Computer Science, Cornell University

Cache Organization
• Three common designs

– Fully associative: Block can be anywhere in 
the cache

– Direct mapped: Block can only be in one line 
in the cache

– Set-associative: Block can be in a few (2 to 8) 
places in the cache

Kavita Bala, Computer Science, Cornell University

Misses
• Three types of misses

– Cold
The line is being referenced for the first time

– Capacity
The line was evicted because the cache was not 
large enough

– Conflict
The line was evicted because of another access 
whose index conflicted



3

Kavita Bala, Computer Science, Cornell University

O
ffs

et
   

   
   

   
   

   
Ta

g

Fully Associative Cache

V Tag Block

=

=

line
select

word/byte
select

hit encode

V

Kavita Bala, Computer Science, Cornell University

Comparison: Direct Mapped Cache

O
ffs

et
   

   
  I

nd
ex

   
   

   
   

  T
ag

V Tag Block

=



4

Kavita Bala, Computer Science, Cornell University

Cache Writes

• No-Write
– writes invalidate the cache and go to memory

• Write-Through
– writes go to cache and to main memory

• Write-Back
– write cache, write main memory only when block is evicted 

CPU
Cache
SRAM

Memory
DRAM

addr

data

Kavita Bala, Computer Science, Cornell University

What about Stores?
• Where should you write the result of a store?

– If that memory location is in the cache?
Send it to the cache
Should we also send it to memory right away?
(write-through policy)
Wait until we kick the block out (write-back policy)

– If it is not in the cache?
Allocate the line (put it in the cache)?
(write allocate policy)
Write it directly to memory without allocation?
(no write allocate policy)



5

Kavita Bala, Computer Science, Cornell University

Handling Stores (Write-Through)

29

123

150
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Ld  R1 ← M[   1   ]
Ld  R2 ← M[   7   ]
St   R2 → M[   0   ]
St   R1 → M[   5   ]
Ld  R2 ← M[  10  ]

CacheProcessor

V tag   data

R0
R1
R2
R3

Memory
78

120

71

173

21

28

200

225

Misses:   0
Hits: 0

0

0

Assume write-allocate
policy

Kavita Bala, Computer Science, Cornell University

Write-Through (REF 1)

29

123

150
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Ld  R1 ← M[   1   ]
Ld  R2 ← M[   7   ]
St   R2 → M[   0   ]
St   R1 → M[   5   ]
Ld  R2 ← M[  10  ]

CacheProcessor

V  tag   data

R0
R1
R2
R3

Memory
78

120

71

173

21

28

200

225

Misses:   0
Hits: 0

0

0



6

Kavita Bala, Computer Science, Cornell University

Write-Through (REF 1)

29

123

150
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Ld  R1 ← M[   1   ]
Ld  R2 ← M[   7   ]
St   R2 → M[   0   ]
St   R1 → M[   5   ]
Ld  R2 ← M[  10  ]

CacheProcessor

0
V  tag   data

R0
R1
R2
R3

Memory
78

120

71

173

21

28

200

225

Misses:   1
Hits: 0

lru

1

0
29
78

29

Kavita Bala, Computer Science, Cornell University

Write-Through (REF 2)

29

123

150
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Ld  R1 ← M[   1   ]
Ld  R2 ← M[   7   ]
St   R2 → M[   0   ]
St   R1 → M[   5   ]
Ld  R2 ← M[  10  ]

CacheProcessor

0
V  tag   data

R0
R1
R2
R3

Memory
78

120

71

173

21

28

200

225

Misses:   1
Hits: 0

lru

1

0
29
78

29



7

Kavita Bala, Computer Science, Cornell University

Write-Through (REF 2)

29

123

150
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Ld  R1 ← M[   1   ]
Ld  R2 ← M[   7   ]
St   R2 → M[   0   ]
St   R1 → M[   5   ]
Ld  R2 ← M[  10  ]

CacheProcessor

0
V  tag   data

R0
R1
R2
R3

Memory

3

78

120

71

173

21

28

200

225

Misses:   2
Hits: 0

lru 1

1
29
78

29

162
173

173

Kavita Bala, Computer Science, Cornell University

Write-Through (REF 3)

29

123

150
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Ld  R1 ← M[   1   ]
Ld  R2 ← M[   7   ]
St   R2 → M[   0   ]
St   R1 → M[   5   ]
Ld  R2 ← M[  10  ]

CacheProcessor

0
V  tag   data

R0
R1
R2
R3

Memory

3

78

120

71

173

21

28

200

225

Misses:   2
Hits: 0

lru 1

1
29
78

29

162
173

173



8

Kavita Bala, Computer Science, Cornell University

Write-Through (REF 3)

29

123

150
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Ld  R1 ← M[   1   ]
Ld  R2 ← M[   7   ]
St   R2 → M[   0   ]
St   R1 → M[   5   ]
Ld  R2 ← M[  10  ]

CacheProcessor

0
V  tag   data

R0
R1
R2
R3

Memory

3

120

71

173

21

28

200

225

Misses:   2
Hits: 1

lru

1

1
29

29

162
173

173

173

173

Kavita Bala, Computer Science, Cornell University

Write-Through (REF 4)

29

123

150
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Ld  R1 ← M[   1   ]
Ld  R2 ← M[   7   ]
St   R2 → M[   0   ]
St   R1 → M[   5   ]
Ld  R2 ← M[  10  ]

CacheProcessor

0
V  tag   data

R0
R1
R2
R3

Memory

3

173

120

71

173

21

28

200

225

Misses:   2
Hits: 1

lru

1

1
29
173

29

162
173

173



9

Kavita Bala, Computer Science, Cornell University

Write-Through (REF 4)

29

123

150
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Ld  R1 ← M[   1   ]
Ld  R2 ← M[   7   ]
St   R2 → M[   0   ]
St   R1 → M[   5   ]
Ld  R2 ← M[  10  ]

CacheProcessor

0
V  tag   data

R0
R1
R2
R3

Memory

2

173

120

71

173

21

28

200

225

Misses:   3
Hits: 1

lru 1

1
29
173

29
173

150
71
29

29

Kavita Bala, Computer Science, Cornell University

Write-Through (REF 5)

29

123

29
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Ld  R1 ← M[   1   ]
Ld  R2 ← M[   7   ]
St   R2 → M[   0   ]
St   R1 → M[   5   ]
Ld  R2 ← M[  10  ]

CacheProcessor

0
V  tag   data

R0
R1
R2
R3

Memory

2

173

120

71

173

21

28

200

225

Misses:   3
Hits: 1

lru 1

1
29
173

29
173

29
71



10

Kavita Bala, Computer Science, Cornell University

Write-Through (REF 5)

29

123

29
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Ld  R1 ← M[   1   ]
Ld  R2 ← M[   7   ]
St   R2 → M[   0   ]
St   R1 → M[   5   ]
Ld  R2 ← M[ 10 ]

CacheProcessor

5
V  tag   data

R0
R1
R2
R3

Memory

2

173

120

71

173

21

28

200

225

Misses:   4
Hits: 1

lru

1

1

29

29
71

33
28

33

Kavita Bala, Computer Science, Cornell University

Ld  R1 ← M[   1   ]
Ld  R2 ← M[   7   ]
St   R2 → M[   0   ]
St   R1 → M[   5   ]
Ld  R2 ← M[  10  ]
St   R0 → M[   5   ]
St   R3 → M[   5   ]
St   R2 → M[   5   ]

Write-Through (REF 6,7,8)

29

123

29
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

CacheProcessor

5
V  tag   data

R0
R1
R2
R3

Memory

2

173

120

71

173

21

28

200

225

Misses:   4
Hits: 1+3

lru

1

1

29

29
71

33
28

33

29



11

Kavita Bala, Computer Science, Cornell University

How Many Memory References?
• Each miss reads a block (only two words in this 

cache)
• Each store writes a word (or a block, depends)
• Total reads: eight words
• Total writes: 

– Before last 3 stores: two words
– After last 3 stores: five 

Kavita Bala, Computer Science, Cornell University

Write-Through vs. Write-Back
Can we also design the cache NOT to write 

all stores immediately to memory?
– Keep the most current copy in cache, and 

update memory when that data is evicted 
(write-back policy)

– Do we need to write-back all evicted lines?
– No, only blocks that have been stored into 

(written)
– Keep a “dirty bit”, reset when the line is 

allocated, set when the block is written 
– If a block is “dirty” when evicted, write its data 

back into memory



12

Kavita Bala, Computer Science, Cornell University

Dirty Bits and Write-Back Buffers

• Dirty bits indicate which lines have been written
• Dirty bits enable the cache to handle multiple writes to 

the same cache line without having to go to memory
• Write-back buffer

– A queue where dirty lines are placed

Tag Data Byte 0, Byte 1  … Byte N

Line

V D

0

0
1

1
1
1

Kavita Bala, Computer Science, Cornell University

Handling Stores (Write-Back)

29

123

150
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Ld  R1 ← M[   1   ]
Ld  R2 ← M[   7   ]
St   R2 → M[   0   ]
St   R1 → M[   5   ]
Ld  R2 ← M[  10  ]

CacheProcessor

V d tag   data

R0
R1
R2
R3

Memory
78

120

71

173

21

28

200

225

Misses:   0
Hits: 0

0

0



13

Kavita Bala, Computer Science, Cornell University

Write-Back (REF 1)

29

123

150
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Ld  R1 ← M[   1   ]
Ld  R2 ← M[   7   ]
St   R2 → M[   0   ]
St   R1 → M[   5   ]
Ld  R2 ← M[  10  ]

CacheProcessor

V d  tag   data

R0
R1
R2
R3

Memory
78

120

71

173

21

28

200

225

Misses:   0
Hits: 0

0

0

Kavita Bala, Computer Science, Cornell University

Write-Back (REF 1)

29

123

150
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Ld  R1 ← M[ 1 ]
Ld  R2 ← M[   7   ]
St   R2 → M[   0   ]
St   R1 → M[   5   ]
Ld  R2 ← M[  10 ]

CacheProcessor

0
V d  tag   data

R0
R1
R2
R3

Memory
78

120

71

173

21

28

200

225

Misses:   1
Hits: 0

01

0lr
u 29

78

29



14

Kavita Bala, Computer Science, Cornell University

Write-Back (REF 2)

29

123

150
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Ld  R1 ← M[   1   ]
Ld  R2 ← M[ 7 ]
St   R2 → M[   0   ]
St   R1 → M[   5   ]
Ld  R2 ← M[  10  ]

CacheProcessor

0
V d  tag   data

R0
R1
R2
R3

Memory
78

120

71

173

21

28

200

225

Misses:   1
Hits: 0

01

0lr
u 29

78

29

Kavita Bala, Computer Science, Cornell University

Write-Back (REF 2)

29

123

150
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Ld  R1 ← M[   1   ]
Ld  R2 ← M[ 7 ]
St   R2 → M[   0   ]
St   R1 → M[   5   ]
Ld  R2 ← M[  10  ]

CacheProcessor

0
V d  tag   data

R0
R1
R2
R3

Memory

3

78

120

71

173

21

28

200

225

Misses:   2
Hits: 0

0

0

1

1

lr
u

29
78

29

162
173

173



15

Kavita Bala, Computer Science, Cornell University

Write-Back (REF 3)

29

123

150
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Ld  R1 ← M[   1   ]
Ld  R2 ← M[   7   ]
St   R2 → M[ 0 ]
St   R1 → M[   5   ]
Ld  R2 ← M[  10  ]

CacheProcessor

0
V d  tag   data

R0
R1
R2
R3

Memory

3

78

120

71

173

21

28

200

225

Misses:   2
Hits: 0

0

0

1

1

lr
u

29
78

29

162
173

173

Kavita Bala, Computer Science, Cornell University

Write-Back (REF 3)

29

123

150
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Ld  R1 ← M[   1   ]
Ld  R2 ← M[   7   ]
St   R2 → M[ 0 ]
St   R1 → M[   5   ]
Ld  R2 ← M[  10 ]

CacheProcessor

0
V d  tag   data

R0
R1
R2
R3

Memory

3

78

120

71

173

21

28

200

225

Misses:   2
Hits: 1

1

0

1

1lr
u 29

173

29

162
173

173



16

Kavita Bala, Computer Science, Cornell University

Write-Back (REF 4)

29

123

150
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Ld  R1 ← M[   1   ]
Ld  R2 ← M[   7   ]
St   R2 → M[   0   ]
St   R1 → M[ 5 ]
Ld  R2 ← M[  10  ]

CacheProcessor

0
V d  tag   data

R0
R1
R2
R3

Memory

3

78

120

71

173

21

28

200

225

Misses:   2
Hits: 1

1

0

1

1lr
u 29

173

29

162
173

173

Kavita Bala, Computer Science, Cornell University

Write-Back (REF 4)

29

123

150
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Ld  R1 ← M[   1   ]
Ld  R2 ← M[   7   ]
St   R2 → M[   0   ]
St   R1 → M[ 5 ]
Ld  R2 ← M[  10  ]

CacheProcessor

0
V d  tag   data

R0
R1
R2
R3

Memory

3

78

120

71

173

21

28

200

225

Misses:   3
Hits: 1

1

1

1

1

lr
u

29
173

29
173

29
71



17

Kavita Bala, Computer Science, Cornell University

Write-Back (REF 5)

29

123

150
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Ld  R1 ← M[   1   ]
Ld  R2 ← M[   7   ]
St   R2 → M[   0   ]
St   R1 → M[   5   ]
Ld  R2 ← M[ 10 ]

CacheProcessor

0
V d  tag   data

R0
R1
R2
R3

Memory

3

78

120

71

173

21

28

200

225

Misses:   3
Hits: 1

1

1

1

1

lr
u

29
173

29
173

29
71

Kavita Bala, Computer Science, Cornell University

Write-Back (REF 5)

29

123

150
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Ld  R1 ← M[   1   ]
Ld  R2 ← M[   7   ]
St   R2 → M[   0   ]
St   R1 → M[   5   ]
Ld  R2 ← M[ 10 ]

CacheProcessor

0
V d  tag   data

R0
R1
R2
R3

Memory

3

78

120

71

173

21

28

200

225

Misses:   4
Hits: 1

1

1

1

1

lr
u

29
173

29
173

29
71

173



18

Kavita Bala, Computer Science, Cornell University

Write-Back (REF 5)

29

123

150
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Ld  R1 ← M[   1   ]
Ld  R2 ← M[   7   ]
St   R2 → M[   0   ]
St   R1 → M[   5   ]
Ld  R2 ← M[ 10 ]

CacheProcessor

5
V d  tag   data

R0
R1
R2
R3

Memory

3

78

120

71

173

21

28

200

225

Misses:   4
Hits: 1

0

1

1

1lr
u

29

29
71

33
28

33

Kavita Bala, Computer Science, Cornell University

Write-Back (REF 6, 7, 8)

29

123

150
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Ld  R1 ← M[   1   ]
Ld  R2 ← M[   7   ]
St   R2 → M[   0   ]
St   R1 → M[   5   ]
Ld  R2 ← M[  10  ]
St   R0 → M[   5   ]
St   R3 → M[   5   ]
St   R2 → M[   5   ]

CacheProcessor

5
V d  tag   data

11R0
R1
R2
R3

Memory

3

78

120

71

173

21

28

200

225

Misses:   4
Hits: 2+1+1

0

1

1

1lr
u

29

33
71

33
28

33



19

Kavita Bala, Computer Science, Cornell University

How many memory references?
• Each miss reads a block 

Two words in this cache
• Each evicted dirty cache line writes a block
• Total reads: eight words
• Total writes: four after final eviction

Choose write-back or write-through?

Kavita Bala, Computer Science, Cornell University

Cache Design
• Need to determine parameters

– Block size
– Number of ways
– Eviction policy
– Write policy
– Separate I-cache from D-cache



20

Kavita Bala, Computer Science, Cornell University

Basic Cache Organization

Decide on the block size
– How?  Simulate lots of different block sizes 

and see which one gives the best 
performance

– Most systems use a block size between 32 
bytes and 128 bytes

Tag Block
OffsetIndex

Kavita Bala, Computer Science, Cornell University



21

Kavita Bala, Computer Science, Cornell University

Tradeoff

• Larger sizes reduce the overhead by
Reducing the number of tags
Reducing the size of each tag 

• But
– Have fewer blocks available
– And the time to fetch the block on a miss is 

longer

Kavita Bala, Computer Science, Cornell University

Short Performance Discussion

• Complicated
– Time from start-to-end (wall-clock time)
– System time, user time
– CPI (Cycles per instruction)

• Ideal CPI?



22

Kavita Bala, Computer Science, Cornell University

Cache Performance
• Consider hit (H) and miss ratio (M)
• H x ATcache + M x ATmemory
• Hit rate = 1 – Miss rate
• Access Time is given in cycles
• Ratio of Access times, 1:50

• 90%   : .90   + .1 x 50     = 5.9
• 95%   : .95   + .05 x 50   = .95+2.5=3.45
• 99%   : .99   + .01 x 50   = 1.49
• 99.9%: .999 + .001 x 50 = 0.999 + 0.05 = 1.049

Kavita Bala, Computer Science, Cornell University

Cache Hit/Miss Rate
• Consider processor that is 2x times faster

– But memory is same speed

• Since AT is access time in terms of cycle 
time: it doubles 2x

• H x ATcache + M x ATmemory

• Ratio of Access times, 1:100
• 99%   : .99   + .01 x 100   = 1.99



23

Kavita Bala, Computer Science, Cornell University

Cache Hit/Miss Rate
• Original is 1GHz, 1ns is cycle time
• CPI (cycles per instruction): 1.49
• Therefore, 1.49 ns for each instruction

• New is 2GHz, 0.5 ns is cycle time.
• CPI: 1.99, 0.5ns.  0.995 ns for each instruction.

• So it doesn’t go to 0.745 ns for each instruction. 
• Speedup is 1.5x (not 2x)

Kavita Bala, Computer Science, Cornell University

Misses
• Three types of misses

– Cold
The line is being referenced for the first time

– Capacity
The line was evicted because the cache was not 
large enough

– Conflict
The line was evicted because of another access 
whose index conflicted



24

Kavita Bala, Computer Science, Cornell University

Cache Conscious Programming

int a[NCOL][NROW];
int sum = 0;

for(j = 0; j < NCOL; ++j) 
for(i = 0; i < NROW; ++i)

sum += a[j][i];

• Speed up this program!

Kavita Bala, Computer Science, Cornell University

Cache Conscious Programming

• Every access is a cache miss!

int a[NCOL][NROW];
int sum = 0;

for(j = 0; j < NCOL; ++j) 
for(i = 0; i < NROW; ++i)

sum += a[j][i];

10

9

8

7

6

155

144

133

122

111



25

Kavita Bala, Computer Science, Cornell University

Cache Conscious Programming

• Same program, trivial transformation, 3 out 
of four accesses hit in the cache

int a[NCOL][NROW];
int sum = 0;

for(i = 0; i < NROW; ++i) 
for(j = 0; j < NCOL; ++j)

sum += a[j][i];

1514131211

10987654321


