CS 316:
Pipelined Architectures

Kavita Bala
Fall 2007
Computer Science
Cornell University

Announcements

« PA3
— Lectures on it this Tue/Thu/Fri
— Due on the Friday after Fall break

* Don’t walit till the last minute
— We are happy to help
— Hazards will take time

Kavita Bala, Computer Science, Cornell University

Laundry Room Design #2

* The room is partitioned into stages

« One person owns a stage at a time, the

room can hold up to four people
simultaneously

Kavita Bala, Computer Science, Cornell University

Laundry Room Design #2

Time

« Elapsed Time for Alice: 4
» Elapsed Time for Bob: 4
» Elapsed Time for both: 5!!!

Kavita Bala, Computer Science, Cornell University

Scenario with varying stage times

e Latency: ?
» Throughput: Batch every 45 minutes

Kavita Bala, Computer Science, Cornell University

Pipelining

 Principle: Latencies can be masked by running
operations in parallel

* Need to identify “stages”

* Need mechanisms for isolating the operations

* Need mechanisms for handling dependencies
between stages

» Let’s apply this principle to processor design...

Kavita Bala, Computer Science, Cornell University

Basic Pipelining

Five stage “RISC” load-store architecture
1. |Instruction fetch (IF)
e get instruction from memory
2. Instruction Decode (ID)
» translate opcode into control signals and read regs
3. Execute (EX)
» perform ALU operation

4. Memory (MEM)
* Access memory if load/store

5. Writeback (WB)
* update register file

Following slides thanks to Sally McKee

Kavita Bala, Computer Science, Cornell University

Pipelined Implementation

* Break the execution of the instruction into
cycles (five, in this case)

» Design a separate stage for the execution
performed during each cycle

 Build pipeline registers (latches) to
communicate between the stages

Kavita Bala, Computer Science, Cornell University
Slides thanks to Sally McKee

Stage 1: Fetch and Decode

» Design a datapath that can fetch an instruction
from memory every cycle
— Use PC to index memory to read instruction
— Increment the PC (assume no branches for now)

» Write everything needed to complete execution
to the pipeline register (IF/ID)
— The next stage will read this pipeline register
— Note that pipeline register must be edge triggered

Kavita Bala, Computer Science, Cornell University

Slides thanks to Sally McKee

M
u
X
_
en Instruction

| Memory/

Cache

| IF/ID

Kavita Bala, Computer Science, Cornell UniversiB ! pel Ine reg Ister

Slides thanks to Sally McKee

Stage 2: Decode

» Reads the IF/ID pipeline register, decodes
instruction, and reads register file (specified by
regA and regB of instruction bits)

— Decode can be easy, just pass on the opcode and let
later stages figure out their own control signals for the
instruction

» Write everything needed to complete execution to
the pipeline register (ID/EX)

— Pass on the offset field and destination register
specifiers (or simply pass on the whole instruction!)

— Pass on PC+1 even though decode didn't use it

Kavita Bala, Computer Science, Cornell University

regB

Destre Register File

IF/ID ID/EX

Pipeline register)) o Pipeline register
Kavita Bala, Computer Science, Cornell University
Slides thanks to Sally McKee

Stage 3: Execute

» Design a datapath that performs the proper ALU
operation for the instruction specified and values
present in the ID/EX pipeline register

— The inputs are the contents of regA and either the
contents of regB or the offset field in the instruction

— Also, calculate PC+1+offset, in case this is a branch

» Write everything needed to complete execution to
the pipeline register (EX/Mem)
— ALU result, contents of regB and PC+1+offset
— Instruction bits for opcode and destReg specifiers

Kavita Bala, Computer Science, Cornell University

= =
s s
il I 2
@© Lo @©
o &5 o
[<})
o = 2
o o c
(8} <= m =
() (=) [<B)
N B3 k=3
.. =

[T
D o
(=) +—
© 0
= <5}
L o
‘I LA R R R NN NRENERNNERENRNERNENNENRENNENENRENNENRNRNNENNERERNERSEHNHEHN] LAl ‘zll EEEEEEN
Py RS oo oo

ID/EX EX/Mem
Pipeline register Pipeline register

Kavita Bala, Computer Science, Cornell University

Slides thanks to Sally McKee

Stage 4: Memory Operation

» Design a datapath that performs the proper
memory operation for the instruction specified
and values present in the EX/Mem pipeline
register
— ALU result contains address for Id and st

instructions
— Opcode bits control memory R/W and enable
signals

» Write everything needed to complete
execution to the pipeline register (Mem/WB)
— ALU result and MemData
— Instruction bits for opcode and destReg specifiers

Kavita Bala, Computer Science, Cornell University

This goes back to the MUX
before the PC in stage 1

MUX control
for PC input

y 3

Data Memory

EX/Mem Mem/WB

Pipeline register Pipeline register
Slides thanks to Sally McKee

Kavita Bala, Computer Science, Cornell University

Stage 5: Write Back

» Design a datapath that conpletes the
execution of this instruction, writing to the
register file if required
— Write MemData to destReg for |d instruction

— Write ALU result to destReg for
arithmetic/logic instructions

— Opcode bits also control register write enable
signal

Kavita Bala, Computer Science, Cornell University

Slides thanks to Sally McKee

Result

Alu

Read Data

-
<}
=
[<5)
=

This goes back to data
input of register file

Stage 4: Memory datapath

bits 0-2
bits 15-17

This goes back to the
estination register specifier| X
Mem/WB gister sp

Pipeline register register write enable
aviia Bala, Computer Science, Cornell University

Slides thanks to Sally McKee

Sample Code (Simple)

» Assume eight-register machine
* Run the following code on a pipelined
datapath

add 3 1 2 ;reg3=regl+reg?2
nand 6 4 5 ; reg6=~(reg4 ®b)
lw 4 20(2) ; reg 4= Mem[reg2+20]
add 5 2 5 ;regb=reg2+reg5b
sw 7 12(3) ; Mem[reg3+12]=reg 7

Kavita Bala, Computer Science, Cornell University

Slides thanks to Sally McKee

Bits 0-2

Bits 15-17

Bits 21-23

IF/ 1D/ EX/ Mem/
ID EX Mem WB

Kavita Bala, Computer Science, Cornell University

Slides thanks to Sally McKee

10

Inst
mem

Register file

Initial Bits02

Bits 15-17

State Bits 21-23

IF/ ID/ EX/ Mem/
ID EX Mem WB

Kavita Bala, Computer Science, Cornell University

Slides thanks to Sally McKee

Register file

Fetch: T
add 312 —

Bits 21-23

IF/ ID/ EX/ Mem/
Time:1 ID EX Mem WB

Kavita Bala, Computer Science, Cornell University

Slides thanks to Sally McKee

nand 645

add312

Time: 2

Slides thanks to Sally McKee

Bits 0-2

Bits 15-17

Bits 21-23
1D/ EX/ Mem/
EX Mem WB

Kavita Bala, Computer Science, Cornell University

lw 4 20(2)

nand 645 add312

M
u
X

mem
Fetch:

lw 4 20(2)

Time: 3

Slides thanks to Sally McKee

IF/
ID

Register file

Bits 0-2

Bits 15-17

Bits 21-23

ID/ EX/ Mem/
EX Mem WB

Kavita Bala, Computer Science, Cornell University

12

add525

lw 4 20(2)

nand 645 add312

mem
Fetch:

add525

Time: 4

Slides thanks to Sally McKee

IF/
ID

Bits 0-2

Bits 15-17

Bits 21-23

1D/ EX/ Mem/
EX Mem WB

Kavita Bala, Computer Science, Cornell University

sw 7 12(3)

add525 Iw 4 20 (2) nand 456 add

Time: 5

Slides thanks to Sally McKee

Bits 0-2

Bits 15-17

Bits 21-23

1D/ EX/

EX Mem WB

Kavita Bala, Computer Science, Cornell University

13

sw712(3) add525 Iw 4 20(2) nand

Inst
mem

No more
instructions

Time: 6

Slides thanks to Sally McKee

IF/
ID

Register file

Bits 0-2

Bits 15-17

Bits 21-23

1D/ EX/ Mem/
EX Mem WB

Kavita Bala, Computer Science, Cornell University

sw 712(3) add525 Iw

Inst
mem

No more
instructions

Time: 7

Slides thanks to Sally McKee

IF/
ID

Register file

Bits 0-2

Bits 15-17

Bits 21-23

ID/
EX Mem WB

Kavita Bala, Computer Science, Cornell University

14

sw712(3)

add

Inst
mem

No more

Register file

Bits 0-2

Bits 15-17

instructions

Bits 21-23

IF/ 1D/ EX/ Mem/
Time:8 ID EX Mem WB
Kavita Bala, Computer Science, Cornell University
Slides thanks to Sally McKee
SW

Inst
mem

No more
instructions

IF/
Time:9 1D

Slides thanks to Sally McKee

Register file

Bits 0-2

Bits 15-17

Bits 21-23

1D/ EX/

EX Mem

Kavita Bala, Computer Science, Cornell University

15

Time Graphs

Time: 1 2 3 4 5 6 7 8 9
add fetch | decode | execute [memory |writeback
nand fetch | decode |execute |[memory|writebacK
lw fetch |decode |execute |memory|writebacK
add fetch |decode |execute |memory|writebacK
SW fetch |decode |execute |memory |writeback

Kavita Bala, Computer Science, Cornell University

Pipelining Recap

* Powerful technique for masking latencies

— Logically, instructions execute one at a time

— Physically, instructions execute in parallel
= |nstruction level parallelism

* Decouples the processor model from the
implementation

— Interface vs. implementation

* BUT dependencies between instructions
complicate the implementation

Kavita Bala, Computer Science, Cornell University

16

What can go wrong?

¢ Structural hazards

— Two instructions in the pipeline try to simultaneously
access the same resource

e Data hazards

— A required operand is not ready

— Usually because a previous instruction in the pipeline
has not committed it to the register file yet

* Control hazards
— The next instruction to fetch cannot be determined

— Usually because a jump or branch instruction has not
determined the next PC yet

Kavita Bala, Computer Science, Cornell University

Data Hazards

time

add fetch decode execute memory writeback

/

nand fetch decode execute memory writeback

If not careful, you read the wrong value of R3

Kavita Bala, Computer Science, Cornell University

Handling Data Hazards

e Avoidance
— Make sure there are no hazards in the code

— Some compilers have done this (Multiflow
Trace)

* Detect and Stall

— If hazards exist, stall the processor until they
go away

— Safe, but not great for performance
» Detect and Forward

— If hazards exist, fix up the pipeline to get the
correct value (if possible)

— Most common solution for high performance

Kavita Bala, Computer Science, Cornell University

Handling Data Hazards |

Just Avoid the Problems
Compiler problem
Beyond scope of this class

 BUT:
— Know it's an option
— Know it's doable

Kavita Bala, Computer Science, Cornell University

18

Handling Data Hazards Il

* Detect and Stall

» Detection:
— Compare regA with previous DestRegs
— Compare regB with previous DestRegs

o Stall:
— Insert a bubble in pipeline
— Keep current instructions in fetch and decode
— Pass a nop to execute

Kavita Bala, Computer Science, Cornell University

Handling Data Hazards lll:

* Detect: same as detect and stall

* Forward:

— New bypass datapaths route computed data to
where it is needed

— New MUX and control to pick the right data

» Beware: Stalling may still be required even
in the presence of forwarding

Kavita Bala, Computer Science, Cornell University

19

