
1

CS 316: 
Pipelined Architectures

Kavita Bala
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Computer Science
Cornell University

Kavita Bala, Computer Science, Cornell University

Announcements

• PA 3
– Lectures on it this Tue/Thu/Fri
– Due on the Friday after Fall break

• Don’t wait till the last minute
– We are happy to help
– Hazards will take time



2

Kavita Bala, Computer Science, Cornell University

Laundry Room Design #2

• The room is partitioned into stages
• One person owns a stage at a time, the 

room can hold up to four people 
simultaneously
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Laundry Room Design #2

• Elapsed Time for Alice: 4
• Elapsed Time for Bob: 4
• Elapsed Time for both: 5!!!

Time
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Scenario with varying stage times

• Latency: ?
• Throughput: Batch every 45 minutes
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Pipelining
• Principle: Latencies can be masked by running 

operations in parallel

• Need to identify “stages”
• Need mechanisms for isolating the operations
• Need mechanisms for handling dependencies 

between stages

• Let’s apply this principle to processor design…
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Basic Pipelining
Five stage “RISC” load-store architecture
1. Instruction fetch (IF)

• get instruction from memory
2. Instruction Decode (ID)

• translate opcode into control signals and read regs
3. Execute (EX)

• perform ALU operation
4. Memory (MEM)

• Access memory if load/store
5. Writeback (WB)

• update register file

Following slides thanks to Sally McKee
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Pipelined Implementation
• Break the execution of the instruction into 

cycles (five, in this case)

• Design a separate stage for the execution 
performed during each cycle

• Build pipeline registers (latches) to 
communicate between the stages

Slides thanks to Sally McKee
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Stage 1: Fetch and Decode
• Design a datapath that can fetch an instruction 

from memory every cycle
– Use PC to index memory to read instruction
– Increment the PC (assume no branches for now)

• Write everything needed to complete execution 
to the pipeline register (IF/ID)
– The next stage will read this pipeline register
– Note that pipeline register must be edge triggered

Slides thanks to Sally McKee
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Stage 2: Decode
• Reads the IF/ID pipeline register, decodes 

instruction, and reads register file (specified by 
regA and regB of instruction bits)
– Decode can be easy, just pass on the opcode and let 

later stages figure out their own control signals for the 
instruction

• Write everything needed to complete execution to 
the pipeline register (ID/EX)
– Pass on the offset field and destination register 

specifiers (or simply pass on the whole instruction!)
– Pass on PC+1 even though decode didn’t use it
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Stage 3: Execute

• Design a datapath that performs the proper ALU 
operation for the instruction specified and values 
present in the ID/EX pipeline register
– The inputs are the contents of regA and either the 

contents of regB or the offset field in the instruction
– Also, calculate PC+1+offset, in case this is a branch

• Write everything needed to complete execution to 
the pipeline register (EX/Mem)
– ALU result, contents of regB and PC+1+offset
– Instruction bits for opcode and destReg specifiers
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Stage 4: Memory Operation
• Design a datapath that performs the proper 

memory operation for the instruction specified 
and values present in the EX/Mem pipeline 
register
– ALU result contains address for ld and st

instructions
– Opcode bits control memory R/W and enable 

signals
• Write everything needed to complete 

execution to the pipeline register (Mem/WB)
– ALU result and MemData
– Instruction bits for opcode and destReg specifiers
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Stage 5: Write Back

• Design a datapath that conpletes the 
execution of this instruction, writing to the 
register file if required
– Write MemData to destReg for ld instruction
– Write ALU result to destReg for 

arithmetic/logic instructions
– Opcode bits also control register write enable 

signal

Slides thanks to Sally McKee
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Sample Code (Simple)
• Assume eight-register machine
• Run the following code on a pipelined 

datapath
add 3 1    2   ;  reg 3 = reg 1 + reg 2
nand  6 4    5   ;  reg 6 = ~(reg 4 & reg 5)
lw 4 20 (2)  ;  reg 4 =  Mem[reg2+20]
add 5 2    5   ;  reg 5 = reg 2 + reg 5
sw    7    12(3)   ;  Mem[reg3+12] = reg 7

Slides thanks to Sally McKee
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Time Graphs

Time: 1         2          3          4          5         6          7         8          9
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Pipelining Recap
• Powerful technique for masking latencies

– Logically, instructions execute one at a time
– Physically, instructions execute in parallel

Instruction level parallelism

• Decouples the processor model from the 
implementation
– Interface vs. implementation

• BUT dependencies between instructions 
complicate the implementation



17

Kavita Bala, Computer Science, Cornell University

What can go wrong?
• Structural hazards

– Two instructions in the pipeline try to simultaneously 
access the same resource

• Data hazards
– A required operand is not ready 
– Usually because a previous instruction in the pipeline 

has not committed it to the register file yet
• Control hazards

– The next instruction to fetch cannot be determined
– Usually because a jump or branch instruction has not 

determined the next PC yet
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Data Hazards

add 3 1   2   
nand 5   3 4

time

fetch      decode    execute   memory    writeback

fetch      decode execute     memory   writeback

add

nand

If not careful, you read the wrong value of R3
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Handling Data Hazards
• Avoidance

– Make sure there are no hazards in the code
– Some compilers have done this (Multiflow

Trace)
• Detect and Stall

– If hazards exist, stall the processor until they 
go away

– Safe, but not great for performance
• Detect and Forward

– If hazards exist, fix up the pipeline to get the 
correct value (if possible)

– Most common solution for high performance
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Handling Data Hazards I

• Just Avoid the Problems 
• Compiler problem
• Beyond scope of this class
• BUT:

– Know it’s an option
– Know it’s doable
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Handling Data Hazards II
• Detect and Stall 
• Detection:

– Compare regA with previous DestRegs
– Compare regB with previous DestRegs

• Stall:
– Insert a bubble in pipeline
– Keep current instructions in fetch and decode
– Pass a nop to execute
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Handling Data Hazards III:

• Detect: same as detect and stall

• Forward:
– New bypass datapaths route computed data to 

where it is needed
– New MUX and control to pick the right data

• Beware: Stalling may still be required even 
in the presence of forwarding


