
1

CS 316:
Pipelined Architectures

Kavita Bala
Fall 2007

Computer Science
Cornell University

Kavita Bala, Computer Science, Cornell University

Announcements

• PA 3
– Lectures on it this Tue/Thu/Fri
– Due on the Friday after Fall break

• Don’t wait till the last minute
– We are happy to help
– Hazards will take time

2

Kavita Bala, Computer Science, Cornell University

Laundry Room Design #2

• The room is partitioned into stages
• One person owns a stage at a time, the

room can hold up to four people
simultaneously

Kavita Bala, Computer Science, Cornell University

Laundry Room Design #2

• Elapsed Time for Alice: 4
• Elapsed Time for Bob: 4
• Elapsed Time for both: 5!!!

Time

3

Kavita Bala, Computer Science, Cornell University

Scenario with varying stage times

• Latency: ?
• Throughput: Batch every 45 minutes

Kavita Bala, Computer Science, Cornell University

Pipelining
• Principle: Latencies can be masked by running

operations in parallel

• Need to identify “stages”
• Need mechanisms for isolating the operations
• Need mechanisms for handling dependencies

between stages

• Let’s apply this principle to processor design…

4

Kavita Bala, Computer Science, Cornell University

Basic Pipelining
Five stage “RISC” load-store architecture
1. Instruction fetch (IF)

• get instruction from memory
2. Instruction Decode (ID)

• translate opcode into control signals and read regs
3. Execute (EX)

• perform ALU operation
4. Memory (MEM)

• Access memory if load/store
5. Writeback (WB)

• update register file

Following slides thanks to Sally McKee

Kavita Bala, Computer Science, Cornell University

Pipelined Implementation
• Break the execution of the instruction into

cycles (five, in this case)

• Design a separate stage for the execution
performed during each cycle

• Build pipeline registers (latches) to
communicate between the stages

Slides thanks to Sally McKee

5

Kavita Bala, Computer Science, Cornell University

Stage 1: Fetch and Decode
• Design a datapath that can fetch an instruction

from memory every cycle
– Use PC to index memory to read instruction
– Increment the PC (assume no branches for now)

• Write everything needed to complete execution
to the pipeline register (IF/ID)
– The next stage will read this pipeline register
– Note that pipeline register must be edge triggered

Slides thanks to Sally McKee

Kavita Bala, Computer Science, Cornell University

In
st

ru
ct

io
n

bi
ts

IF / ID
Pipeline register

PC

Instruction
Memory/

Cache

en

en

1

+

M
U
X

R
es

t o
f p

ip
el

in
ed

 d
at

ap
at

h

PC
 +

 1

Slides thanks to Sally McKee

6

Kavita Bala, Computer Science, Cornell University

Stage 2: Decode
• Reads the IF/ID pipeline register, decodes

instruction, and reads register file (specified by
regA and regB of instruction bits)
– Decode can be easy, just pass on the opcode and let

later stages figure out their own control signals for the
instruction

• Write everything needed to complete execution to
the pipeline register (ID/EX)
– Pass on the offset field and destination register

specifiers (or simply pass on the whole instruction!)
– Pass on PC+1 even though decode didn’t use it

Kavita Bala, Computer Science, Cornell University

Destreg

Data

ID / EX
Pipeline register

C
on

te
nt

s
O

f r
eg

A
C

on
te

nt
s

O
f r

eg
BRegister File

regA
regB

en

R
es

t o
f p

ip
el

in
ed

 d
at

ap
at

h

In
st

ru
ct

io
n

bi
ts

IF / ID
Pipeline register

PC
 +

 1

PC
 +

 1
C

on
tr

ol
Si

gn
al

s

St
ag

e
1:

 In
st

 F
et

ch
 d

at
ap

at
h

Slides thanks to Sally McKee

7

Kavita Bala, Computer Science, Cornell University

Stage 3: Execute

• Design a datapath that performs the proper ALU
operation for the instruction specified and values
present in the ID/EX pipeline register
– The inputs are the contents of regA and either the

contents of regB or the offset field in the instruction
– Also, calculate PC+1+offset, in case this is a branch

• Write everything needed to complete execution to
the pipeline register (EX/Mem)
– ALU result, contents of regB and PC+1+offset
– Instruction bits for opcode and destReg specifiers

Kavita Bala, Computer Science, Cornell University

ID / EX
Pipeline register

C
on

te
nt

s
O

f r
eg

A
C

on
te

nt
s

O
f r

eg
B

R
es

t o
f p

ip
el

in
ed

 d
at

ap
at

h

A
lu

R
es

ul
t

EX/Mem
Pipeline register

PC
 +

 1
C

on
tr

ol
Si

gn
al

sSt
ag

e
2:

 D
ec

od
e

da
ta

pa
th

C
on

tr
ol

Si
gn

al
s

co
nt

en
ts

of

 r
eg

B

A
L
U

M
U
X

PC
 +

 1
+

of
fs

et

Magic

Slides thanks to Sally McKee

8

Kavita Bala, Computer Science, Cornell University

Stage 4: Memory Operation
• Design a datapath that performs the proper

memory operation for the instruction specified
and values present in the EX/Mem pipeline
register
– ALU result contains address for ld and st

instructions
– Opcode bits control memory R/W and enable

signals
• Write everything needed to complete

execution to the pipeline register (Mem/WB)
– ALU result and MemData
– Instruction bits for opcode and destReg specifiers

Kavita Bala, Computer Science, Cornell University

A
lu

R
es

ul
t

Mem/WB
Pipeline register

R
es

t o
f p

ip
el

in
ed

 d
at

ap
at

h

A
lu

R
es

ul
t

EX/Mem
Pipeline register

St
ag

e
3:

 E
xe

cu
te

 d
at

ap
at

h

C
on

tr
ol

Si
gn

al
s

PC
+1

+o
ff

se
t

co
nt

en
ts

of

 r
eg

B

This goes back to the MUX
before the PC in stage 1

M
em

or
y

R
ea

d
D

at
a

Data Memory

en R/W

C
on

tr
ol

Si
gn

al
s

MUX control
for PC input

Slides thanks to Sally McKee

9

Kavita Bala, Computer Science, Cornell University

Stage 5: Write Back

• Design a datapath that conpletes the
execution of this instruction, writing to the
register file if required
– Write MemData to destReg for ld instruction
– Write ALU result to destReg for

arithmetic/logic instructions
– Opcode bits also control register write enable

signal

Slides thanks to Sally McKee

Kavita Bala, Computer Science, Cornell University

A
lu

R
es

ul
t

Mem/WB
Pipeline register

St
ag

e
4:

 M
em

or
y

da
ta

pa
th

C
on

tr
ol

Si
gn

al
s

M
em

or
y

R
ea

d
D

at
a

M
U
X

This goes back to data
input of register file

This goes back to the
destination register specifier

M
U
X

bits 0-2

bits 15-17
register write enable

Slides thanks to Sally McKee

10

Kavita Bala, Computer Science, Cornell University

Sample Code (Simple)
• Assume eight-register machine
• Run the following code on a pipelined

datapath
add 3 1 2 ; reg 3 = reg 1 + reg 2
nand 6 4 5 ; reg 6 = ~(reg 4 & reg 5)
lw 4 20 (2) ; reg 4 = Mem[reg2+20]
add 5 2 5 ; reg 5 = reg 2 + reg 5
sw 7 12(3) ; Mem[reg3+12] = reg 7

Slides thanks to Sally McKee

Kavita Bala, Computer Science, Cornell University

PC Inst
mem

R
eg

is
te

r f
ile

M
U
XA

L
U

M
U
X

1

Data
mem

+

M
U
X

IF/
ID

ID/
EX

EX/
Mem

Mem/
WB

M
U
X

Bits 0-2
Bits 15-17

op

dest

offset

valB

valA

PC+1PC+1
target

ALU
result

op

dest

valB

op

dest

ALU
result

mdata

instruction

0

R2

R3

R4

R5

R1

R6

R0

R7

regA
regB

Bits 21-23

data

dest

Slides thanks to Sally McKee

11

Kavita Bala, Computer Science, Cornell University

PC Inst
mem

R
eg

is
te

r f
ile

M
U
XA

L
U

M
U
X

1

Data
mem

+

M
U
X

IF/
ID

ID/
EX

EX/
Mem

Mem/
WB

M
U
X

Bits 0-2
Bits 15-17

nop

0

0

0

0

00
0

0

nop

0

0

nop

0

0

0

0

nop

9
12
18
7

36

41

0

22

R2

R3

R4

R5

R1

R6

R0

R7

Bits 21-23

data

dest

Initial
State

Slides thanks to Sally McKee

Kavita Bala, Computer Science, Cornell University

PC Inst
mem

R
eg

is
te

r f
ile

M
U
XA

L
U

M
U
X

1

Data
mem

+

M
U
X

IF/
ID

ID/
EX

EX/
Mem

Mem/
WB

M
U
X

Bits 0-2
Bits 15-17

nop

0

0

0

0

01
0

0

nop

0

0

nop

0

0

0

0add 3 1 2

9
12
18
7

36

41

0

22

R2

R3

R4

R5

R1

R6

R0

R7

Bits 21-23

data

dest

Fetch:
add 3 1 2

add 3 1 2

Time: 1
Slides thanks to Sally McKee

12

Kavita Bala, Computer Science, Cornell University

PC Inst
mem

R
eg

is
te

r f
ile

M
U
XA

L
U

M
U
X

1

Data
mem

+

M
U
X

IF/
ID

ID/
EX

EX/
Mem

Mem/
WB

M
U
X

Bits 0-2
Bits 15-17

add

3

3

9

36

12
0

0

nop

0

0

nop

0

0

0

0nand 6 4 5

9
12
18
7

36

41

0

22

R2

R3

R4

R5

R1

R6

R0

R7

1
2

Bits 21-23

data

dest

Fetch:
nand 6 4 5

nand 6 4 5 add 3 1 2

Time: 2
Slides thanks to Sally McKee

Kavita Bala, Computer Science, Cornell University

PC Inst
mem

R
eg

is
te

r f
ile

M
U
XA

L
U

M
U
X

1

Data
mem

+

M
U
X

IF/
ID

ID/
EX

EX/
Mem

Mem/
WB

M
U
X

Bits 0-2
Bits 15-17

nand

6

6

7

18

23
4

45

add

3

9

nop

0

0

0

0lw
 4 20(2)

9
12
18
7

36

41

0

22

R2

R3

R4

R5

R1

R6

R0

R7

4
5

Bits 21-23

data

dest

Fetch:
lw 4 20(2)

lw 4 20(2) nand 6 4 5 add 3 1 2

Time: 3

36

9

3

Slides thanks to Sally McKee

13

Kavita Bala, Computer Science, Cornell University

PC Inst
mem

R
eg

is
te

r f
ile

M
U
XA

L
U

M
U
X

1

Data
mem

+

M
U
X

IF/
ID

ID/
EX

EX/
Mem

Mem/
WB

M
U
X

Bits 0-2
Bits 15-17

lw

4

20

18

9

34
8

-3

nand

6

7

add

3

45

0

0add 5 2 5

9
12
18
7

36

41

0

22

R2

R3

R4

R5

R1

R6

R0

R7

2
4

Bits 21-23

data

dest

Fetch:
add 5 2 5

add 5 2 5 lw 4 20(2) nand 6 4 5 add 3 1 2

Time: 4

18

7

6

45

3

Slides thanks to Sally McKee

Kavita Bala, Computer Science, Cornell University

PC Inst
mem

R
eg

is
te

r f
ile

M
U
XA

L
U

M
U
X

1

Data
mem

+

M
U
X

IF/
ID

ID/
EX

EX/
Mem

Mem/
WB

M
U
X

Bits 0-2
Bits 15-17

add

5

5

7

9

45
23

29

lw

4

18

nand

6

-3

0

0sw
 7 12(3)

9
45
18
7

36

41

0

22

R2

R3

R4

R5

R1

R6

R0

R7

2
5

Bits 21-23

data

dest

Fetch:
sw 7 12(3)

sw 7 12(3) add 5 2 5 lw 4 20 (2) nand 4 5 6 add

Time: 5

9

20

4

-3

6

45

3

Slides thanks to Sally McKee

14

Kavita Bala, Computer Science, Cornell University

PC Inst
mem

R
eg

is
te

r f
ile

M
U
XA

L
U

M
U
X

1

Data
mem

+

M
U
X

IF/
ID

ID/
EX

EX/
Mem

Mem/
WB

M
U
X

Bits 0-2
Bits 15-17

sw

7

12

22

45

5
9

16

add

5

7

lw

4

29

99

0
9

45
18
7

36

-3

0

22

R2

R3

R4

R5

R1

R6

R0

R7

3
7

Bits 21-23

data

dest

No more
instructions

sw 7 12(3) add 5 2 5 lw 4 20(2) nand

Time: 6

9

7

5

29

4

-3

6

Slides thanks to Sally McKee

Kavita Bala, Computer Science, Cornell University

PC Inst
mem

R
eg

is
te

r f
ile

M
U
XA

L
U

M
U
X

1

Data
mem

+

M
U
X

IF/
ID

ID/
EX

EX/
Mem

Mem/
WB

M
U
X

Bits 0-2
Bits 15-17

15

57

sw

7

22

add

5

16

0

0
9

45
99
7

36

-3

0

22

R2

R3

R4

R5

R1

R6

R0

R7

Bits 21-23

data

dest

No more
instructions

sw 7 12(3) add 5 2 5 lw

Time: 7

45

7

12

16

5

99

4

Slides thanks to Sally McKee

15

Kavita Bala, Computer Science, Cornell University

PC Inst
mem

R
eg

is
te

r f
ile

M
U
XA

L
U

M
U
X

1

Data
mem

+

M
U
X

IF/
ID

ID/
EX

EX/
Mem

Mem/
WB

M
U
X

Bits 0-2
Bits 15-17

sw

7

57

0

9
45
99
16

36

-3

0

22

R2

R3

R4

R5

R1

R6

R0

R7

Bits 21-23

data

dest

No more
instructions

sw 7 12(3) add

Time: 8

2257

22

16

5

Slides thanks to Sally McKee

Kavita Bala, Computer Science, Cornell University

PC Inst
mem

R
eg

is
te

r f
ile

M
U
XA

L
U

M
U
X

1

Data
mem

+

M
U
X

IF/
ID

ID/
EX

EX/
Mem

Mem/
WB

M
U
X

Bits 0-2
Bits 15-17

9
45
99
16

36

-3

0

22

R2

R3

R4

R5

R1

R6

R0

R7

Bits 21-23

data

dest

No more
instructions

sw

Time: 9
Slides thanks to Sally McKee

16

Kavita Bala, Computer Science, Cornell University

Time Graphs

Time: 1 2 3 4 5 6 7 8 9

add

nand

lw

add

sw

fetch decode execute memory writeback

fetch decode execute memory writeback

fetch decode execute memory writeback

fetch decode execute memory writeback

fetch decode execute memory writeback

Kavita Bala, Computer Science, Cornell University

Pipelining Recap
• Powerful technique for masking latencies

– Logically, instructions execute one at a time
– Physically, instructions execute in parallel

Instruction level parallelism

• Decouples the processor model from the
implementation
– Interface vs. implementation

• BUT dependencies between instructions
complicate the implementation

17

Kavita Bala, Computer Science, Cornell University

What can go wrong?
• Structural hazards

– Two instructions in the pipeline try to simultaneously
access the same resource

• Data hazards
– A required operand is not ready
– Usually because a previous instruction in the pipeline

has not committed it to the register file yet
• Control hazards

– The next instruction to fetch cannot be determined
– Usually because a jump or branch instruction has not

determined the next PC yet

Kavita Bala, Computer Science, Cornell University

Data Hazards

add 3 1 2
nand 5 3 4

time

fetch decode execute memory writeback

fetch decode execute memory writeback

add

nand

If not careful, you read the wrong value of R3

18

Kavita Bala, Computer Science, Cornell University

Handling Data Hazards
• Avoidance

– Make sure there are no hazards in the code
– Some compilers have done this (Multiflow

Trace)
• Detect and Stall

– If hazards exist, stall the processor until they
go away

– Safe, but not great for performance
• Detect and Forward

– If hazards exist, fix up the pipeline to get the
correct value (if possible)

– Most common solution for high performance

Kavita Bala, Computer Science, Cornell University

Handling Data Hazards I

• Just Avoid the Problems
• Compiler problem
• Beyond scope of this class
• BUT:

– Know it’s an option
– Know it’s doable

19

Kavita Bala, Computer Science, Cornell University

Handling Data Hazards II
• Detect and Stall
• Detection:

– Compare regA with previous DestRegs
– Compare regB with previous DestRegs

• Stall:
– Insert a bubble in pipeline
– Keep current instructions in fetch and decode
– Pass a nop to execute

Kavita Bala, Computer Science, Cornell University

Handling Data Hazards III:

• Detect: same as detect and stall

• Forward:
– New bypass datapaths route computed data to

where it is needed
– New MUX and control to pick the right data

• Beware: Stalling may still be required even
in the presence of forwarding

